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Abstract

Internet users rely on the availability of websites and digital services to engage in

political discussions, report on newsworthy events in real-time, watch videos, etc.

However, sometimes those who control networks, such as governments, censor certain

websites, block specific applications or throttle encrypted traffic. Understandably,

when users are faced with egregious censorship, where certain websites or applications

are banned, they seek reliable and efficient means to circumvent such blocks. This

tension is evident in countries such as a Iran and China, where the Internet censorship

infrastructure is pervasive and continues to increase in scope and effectiveness.

An arms race is unfolding with two competing threads of research: (1) network

operators’ ability to classify traffic and subsequently enforce policies and (2) network

users’ ability to control how network operators classify their traffic. Our goal is to un-

derstand and progress the state-of-the-art for both sides. First, we present novel traf-

fic analysis attacks against encrypted communications. We show that state-of-the-art

cryptographic protocols leak private information about users’ communications, such

as the websites they visit, applications they use, or languages used for communica-

tions. Then, we investigate means to mitigate these privacy-compromising attacks.

Towards this, we present a toolkit of cryptographic primitives and protocols that

simultaneously (1) achieve traditional notions of cryptographic security, and (2) en-

able users to conceal information about their communications, such as the protocols

used or websites visited. We demonstrate the utility of these primitives and proto-

cols in a variety of real-world settings. As a primary use case, we show that these

new primitives and protocols protect network communications and bypass policies of

state-of-the-art hardware-based and software-based network monitoring devices.
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1 Introduction

Traffic analysis (TA) is the study of network traffic features. Features may include,

but are not limited to: message timings or lengths, the contents of a message, or even

the communicating parties. TA is commonly employed to give network operators

insights into their networks. In some cases, TA is used to provide Quality of Service

(QoS) and give higher priority to time-sensitive traffic, such as VoIP or real-time

video. In other cases it is used to help network operators understand who or what

is utilizing their network resources. However, this same technology is controversially

used by governments to censor websites, such as YouTube, or to block applications,

such as Tor [44].

Worldwide, more than three billion [111] people regularly access the Internet.

Unfortunately, as much as a third [17] of Internet users are subject to surveillance

or censorship by their own government. Hence, we are interested in specific cases of

the following two questions: What information can a network operator infer about

the behavior of its users? and How can network users ensure the privacy of their

communications? On one hand, if a network operator wishes to enforce a specific

policy, such as restrict all access to BBC News, how would they do so? Conversely, if

a user wants to conceal that they are visiting BBC News from their network operator,

what tools should they use? We’ll spend the remainder of this dissertation exploring

these questions.

1.1 Censorship Circumvention

There are a number of tools that a user might employ to protect the contents of

their communications. As one example, state-of-the-art encryption does a good job

concealing message contents. Nevertheless, modern encryption has fundamental lim-

1
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Figure 1: The number of directly connecting users in Iran to the Tor network from late 2010 to
early 2011. In January 2011 Iran applied blocks to restrict connections to the Tor network, which
resulted in the sudden drop in usage.

itations.

How Iran banned encryption. Let’s consider at a concrete example in Iran of

how encryption failed to protect users’ communications. On January 9, 2011 users

from Iran were unable to access the Internet using privacy tools such as Tor. The

blocks set in place were both immediate and effective, as we can see in Figure 1. Iran

was able to prevent users from connecting to the Tor Network using IP-based blocking

— if the server’s address was on Iran’s blacklist, it was inaccessible from Iran.

This is a case where, despite well-implemented cryptographic protocols, sensitive

information about the users’ communications was used to censor a certain type (i.e.,

Tor) of traffic. The government was not required to achieve a substantial crypto-

graphic breakthrough or expend significant financial resources. Yet, they were able

to restrict all access to the Tor network on a national scale.

2



www.manaraa.com

State-of-the-art cryptography is insufficient. Intuitively, it should be the case

that state-of-the-art cryptography renders these questions uninteresting. That is, if

fundamentally-sound cryptographic protocols are implemented, deployed and used

properly, network operators should be unable to infer any information about a user’s

behavior — unfortunately, this is an invalid assumption for many reasons. State-

of-the-art cryptography may do a good job concealing information about individual

messages. However, it does not conceal many important characteristics about com-

munications, such as: Which two users are communicating? or How much data is a

specific user sending/receiving?. On the surface, these questions may seem innocuous.

However, in some countries, specific types of encryption are disallowed by network

policy — hence, by using certain applications, such as Tor [44], one may incriminate

themselves. More subtly, it has been shown repeatedly that it’s possible to infer a

user’s web browsing behavior [16, 73, 60, 92, 24, 83], even when all communications

are encrypted, by analyzing the lengths and timings of ciphertexts transmitted.

Overview The remainder of this dissertation is divided into seven parts. In Section 2

we survey prior literature in the area of traffic analysis. In Section 3 we explore the

limitations of state-of-the-art cryptographic protocols against traffic analysis attacks.

We show that popular encrypted messaging services, such as Apple’s iMessage and

WhatsApp, do a poor job concealing the private information of users. In Section 4 we

provide a series of negative results and show that a host of per-packet countermeasures

are not sufficient to protect against state-of-the-art-attacks [73, 60, 92] on user web

browsing habits. In Section 5 we survey prior literature in the area of censorship and

censorship circumvention. Towards resisting a specific class of these TA attacks, we

propose a novel strategy in Section 6 for bypassing regular-expression-based network

monitoring systems. In Section 7 we present generic, novel programmable network

3
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traffic obfuscation framework, which enables users to control their network traffic fea-

tures, including message lengths and formats. Using this framework, one can bypass

sophisticated network monitoring systems that analyze multiple messages in a datas-

tream or maintain inter-connection state. We conclude with Section 8 and present

thoughts for future works in this area.

4
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2 Overview: Traffic Analysis of Encrypted Communications

Internet users increasingly rely upon encryption to secure their communications. How-

ever, unfortunately, it has been shown across many settings that state-of-the-art cryp-

tography can leak private information about its users. This includes the analysis of

encrypted VoIP traffic [130, 128, 129, 122] to recover spoken phrases. Alternatively,

it has been shown that sensitive user input [29, 77, 28] can be revealed by observing

multiple, encrypted web requests from a client.

In another setting, inter-packet timings were used to reduce the complexity of

a brute-force attack against SSH passwords [105]. Techniques have been presented

that show how to identify applications in an encrypted tunnel [15, 30, 46, 45, 138].

User traffic patterns, and the applications they use, can leak sensitive information

[69, 70, 67, 66, 136], despite encryption, too.

We refer to these types of privacy failures as traffic analysis attacks. In this section

we focus on two specific types of traffic analysis (TA) attacks. First, we’ll discuss

attacks on encrypted messaging services which reveal information about users, such as

their host operating system, language used for communications, and even the lengths

of word/sentences communicated during a conversation. Then, we’ll consider website

fingerprinting attacks that reveal sensitive information about users’ web browsing

behavior, despite strong encryption.

2.1 Attacks on Encrypted Messaging Services

Informally, we refer to attacks on encrypted messaging services as any type of attack

that enables an adversary to learn sensitive information about a user of the service,

such as Apple’s iMessage, despite encryption. As a couple examples, it could be

possible for an encrypted messaging service to leak sensitive information, such as:

5
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the user’s operating system, language of communications, or even the time of day

they are using their computer.

Given that services such as Apple’s iMessage are proprietary, this presents chal-

lenges in understanding how the systems are implemented and how they might leak

sensitive information. iMessage uses the Apple Push Notification Service (APNS) to

deliver text messages and attachments to users. To date, there have been two primary

efforts in understanding the operation of the iMessage service and the APNS proto-

col. Frister and Kreichgauer have developed the open source Push Proxy project [51],

which allows users to decode APNS messages into a readable format by redirecting

those messages through a man-in-the-middle proxy. In another recent effort, Matthew

Green [56] and Ashkan Soltani [55] showed that, while iMessage data is protected by

end-to-end encryption, the keys used to perform that encryption are mediated by an

Apple-run directory service that could potentially be used by an attacker (or Apple

themselves) to install their own keys for eavesdropping purposes. To the best of our

knowledge, there are no works that specifically examine the privacy of encrypted in-

stant messaging services, particularly those used by mobile devices. This is surprising,

given that a highly-accurate attack could affect nearly a billion users across a wide

variety of messaging services.

2.2 Website Fingerprinting Attacks

A website fingerprinting attack has been informally defined in the literature as the

following. A user establishes an encrypted connection to a proxy server, and an ad-

versary is able to observe all ciphertexts between the client and proxy. The adversary

knows a priori a set S of possible websites a user may visit and is able to train and

test their classifier on traffic traces. In most cases, it is assumed that traffic traces are

free from real-world artifacts, such as proxy-side caching. If the client is only able to
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request websites in the set S we call this the closed-world setting. If the client is not

restricted to the websites in S, we call it the open-world setting. We refer to the set

S as the privacy set, and its size as k = |S|. When a user requests a website, it’s the

job of the adversary to determine which website in S was requested. If the website

requested is not in S, the adversary must indicate so, but is not required to identify

the specific website. In the closed-world setting, the adversaries’ accuracy is defined

as the probability that it guesses the correct website. In the open-world setting, as

noted in [3], there are a number of different success metrics to consider in addition

to accuracy, including the false-positive rate. (i.e., outputting that a request is from

a website in S, when it’s not)

There is an extensive history of literature on traffic analysis and website finger-

printing attacks. The first academic discussion of website fingerprinting attacks was

by Wagner and Schneier [114]. They relayed an observation of Yee that SSL might

leak the URL of an HTTP GET request because ciphertexts leak plaintext length.

Wagner and Schneier suggested that per-ciphertext random padding should be in-

cluded for all cipher modes of SSL.

Cheng and Avnur [31] provided some of the first experimental evidence of web

page fingerprinting attacks by analyzing pages hosted within one of three websites.

Their attack assumes perfect knowledge of HTML and web page object sizes, which is

not always precisely inferred from ciphertexts. They also suggested countermeasures

including padding of HTML documents, fixed-length padding, and introduction of

spurious HTTP requests.

Sun et al. [106] investigated a similar setting, in which the adversary can precisely

uncover the size of individual HTTP objects in a non-pipelined, encrypted HTTP

connection. They provided a thorough evaluation utilizing a corpus of 100,000 web-

sites. They described a classifier based on the Jaccard coefficient similarity metric

7
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and a simple thresholding scheme. They also explored numerous countermeasures,

including per-packet padding, byte-range requests, client-based prefetching, server-

based pushing of content, content negotiation, web ad blockers, pipelining, and using

multiple browsers in parallel.

Hintz [61] discussed a simple attack for identifying which of five popular web pages

was visited over a single-hop proxy service called SafeWeb. The proposed attack does

not require exact knowledge of web request sizes, but there is little evaluation and it

remains unclear how the attack would fair with larger privacy sets.

Bissias et al. [16] demonstrated a weaker adversary than that of Sun et al. [106],

which could observe an SSH tunnel and view only the length, direction, and tim-

ing of each ciphertext transmitted, rather than web page objects. They used cross-

correlation to determine webpage similarity, which is a metric commonly used for

evaluating the similarity of two time series.

Liberatore and Levine [73] showed that it is possible to infer the contents of an

HTTP transaction encapsulated in an SSH connection by observing only encrypted

packet lengths and the directions of unordered packets. They quantify the ability

of several countermeasures, including linear, exponential, and fixed-length padding

schemes, to protect against their attack, but only report on a privacy set size of

k = 1000.

Herrmann et al. [60] collected encrypted traces from four different types of single-

hop encryption technologies, and two multi-hop anonymity networks. They were the

first to suggest the use of a multinomial naïve Bayes classifier for traffic classification

that examines normalized packet counts. Their evaluation of countermeasures was

restricted to application-layer countermeasures.

Panchenko et al. [92] presented a support vector machine classifier as an improve-

ment upon the work of Herrmann et al. [60]. They apply it to Tor [44] traffic they
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generated in both a closed-word and open-world setting, showing good accuracy.

Cai et al. [24] showed that ad-hoc, application-layer defenses [77] provide little

benefit for privacy sets of size k = 100. Wang et al. [117] demonstrated that high-

accuracy website fingerprinting is possible in the open-world setting when using Tor.

Chen et al. [29] and Miller et al. [83] evaluated web applications, and showed that

they can leak sensitive legal, financial, or health information about users.

In other works, more principled approaches are taken to quantify information

leakage in web applications [80] and to determine the efficacy of defenses [23, 116].

More recently Shi et al. [101] showed that algorithms traditionally used in signal

processing could be applied to improve the efficacy of website fingerprinting attacks

against webpages with dynamic contents. Mather et al. [79] showed that mutual

information between the user inputs and web applications responses can be used to

determine the potential for information leakage.

In contrast, a host of strategies have been proposed to mitigate website finger-

printing attacks. Wright et al. [127] suggested traffic morphing, which can minimize

padding overhead while still making one web page “look like" another with respect

to specific features. Luo et al. [77] presented HTTPOS, which describes a number

of client side mechanisms, such as adding superfluous data to HTTP GET requests,

in order to thwart TA attacks. Backes et al. [11] modeled web applications and the

information they can leak, which may be a step towards general-purpose countermea-

sures.

Nithyanand et al. suggests a countermeasures that relies upon a priori knowledge

of traffic that is being transmitted [90], which is a strong assumption, but can greatly

increase efficiency. CS-BuFLO by Cai et al. [22], presents a more efficient variant of

sending fixed-length packets at fixed-time intervals.

Finally, we note that the website fingerprinting attacks and defenses in the litera-
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ture span a wide range of settings. Even though these results may be reproducible in

controlled settings, there remain questions about how they scale in practice. Juarez

et al. [3] address this, and show that certain variables such as user’s browsing habits,

caching, differences in location and browser version can have a significant impact on

the efficacy of attacks and defenses.
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3 Traffic Analysis of Encrypted Message Services

Over the course of the past decade, instant messaging services have gone from a niche

application used on desktop computers to the most prevalent form of communication

in the world, due in large part to the growth of Internet-enabled phones and tablets.

Messaging services, like Apple iMessage and WhatsApp, handle tens of billions of

messages each day from an international user base of over one billion people [74, 91].

Given the volume of messages traversing these services and ongoing concerns over

widespread eavesdropping of Internet communications, it is not surprising that pri-

vacy has been an important topic for both the users and service providers. To protect

user privacy, these messaging services offer transport layer encryption technologies to

protect messages in transit, and some services, like iMessage and Telegram, offer end-

to-end encryption to ensure that not even the providers themselves can eavesdrop on

the messages [8, 57]. However, as we explored in Section 2, state-of-the-art encryption

does not guarantee the privacy of the underlying message contents.

In this section, we analyze the network traffic of popular encrypted messaging

services to (1) understand the breadth and depth of their information leakage, (2)

determine if attacks are generalizable across services, and (3) calculate the potential

costs of protecting against this leakage. Specifically, we focus our analysis on the

Apple iMessage service and show that it is possible to reveal information about the

device operating system, fine-grained user actions, the language of the messages, and

even the approximate message length with accuracy exceeding 96%, as shown in the

summary provided in Table 1. In addition, we demonstrate that these attacks are

applicable to many other popular messaging services, such as WhatsApp, Viber, and

Telegram, because they target deterministic relationships between user actions and

the resultant encrypted packets that exist regardless of the underlying encryption
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Attack Method Accuracy
Operating System Naïve Bayes 100%
User Action Lookup Table 96%
Language Naïve Bayes 98%
Message Length Linear Regression 6.27 chars.

Table 1: Summary of attack results for Apple iMessage.

methods or network protocols used. Our analysis of countermeasures shows that the

attacks can be completely mitigated by adding random padding to the messages, but

at a cost of over 300% overhead, which translates to at least a terabyte of extra data

per day for the service providers. Overall, these attacks could impact over a billion

users across the globe and the high level of accuracy that we demonstrate in our

experiments means that they represent realistic threats to privacy, particularly given

recent revelations about widespread metadata collection by government agencies [35].

Acknowledgements The work described in this section was done in collaboration

with Coull [36] and a version was published in the ACM SIGCOMM Computer Com-

munication Review in October 2014. Coull lead the project in regards to the vision,

data collection and writing. Dyer lead the engineering efforts and assisted with the

data collection and writing.

3.1 iMessage Overview

In this section we’ll provide an overview of the iMessage service. Readers interested in

the low-level details of iMessage should refer to documentation from projects focused

on reverse engineering specific portions of the iMessage service [51, 55, 56], or the

official Apple iOS security white paper [8]. The following information was accurate

as of August 2013.

iMessage uses the Apple Push Notification Service (APNS) to deliver text mes-

sages and attachments to users. When the device is first registered with Apple, a client
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certificate is created and stored on the device. Every time the device is connected to

the Internet, a persistent APNS connection is made to Apple over TCP port 5223.

The connection appears to be a standard TLS tunnel protecting the APNS messages.

From here, the persistent APNS connection is used to send and receive both control

messages and user content for the iMessage service, as well as other Apple services

(e.g., FaceTime). If the user has not recently interacted with the sender or recipient

of a message, then the client initiates a new TLS connection with Apple on TCP

port 443 and receives key information for the opposite party. Unlike earlier TLS

connections, this one is authenticated using the client certificate generated during

the registration process1. Once the keys are established, there are five user actions

that are observable through the APNS and TLS connections made by the iMessage

service. These actions include: (1) start typing, (2) stop typing, (3) send text, (4)

send attachment, and (5) read receipt. All of the user actions mentioned follow the

protocol flow shown in Figure 2, except for sending an attachment. The protocol

flow for attachments is quite similar except that the attachment itself is stored in the

Microsoft Azure cloud storage system before it is retrieved, rather than being sent

directly through Apple.

Over the course of our analysis, we observed some interesting deviations from this

standard protocol. For instance, when TCP port 5223 is blocked, the APNS message

stream shifts to using TCP port 443. Similarly, cellular-enabled iOS devices use port

5223 while connected to the cellular network, but switch to port 443 when WiFi is

used. Moreover, if the iOS device began its connection using the cellular network,

that connection will remain active even if the device is subsequently connected to a

wireless access point. It is important to note that payload sizes and general APNS

protocol behaviors remain exactly the same whether port 5223 or 443 are used, and
1The client certificate provides an identifier that we can use to develop a social network of

iMessage communications.
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Figure 2: High-level operation of iMessage.

therefore the attacks we present in this section are equally applicable in both cases.

3.2 Analyzing Information Leakage

In this section, we investigate information leakage about devices, users, and messages

by analyzing the relationship between packet sizes within the persistent APNS con-

nection used by iMessage and user actions. For each of these categories of leakage,

we first provide a general analysis of the data to discover trends or distinguishing

features, then evaluate classification strategies capable of exploiting those features.

3.2.1 Data and Methodology

To evaluate our classifiers, we collected data for each of the five observable user ac-

tions (start, stop, text, attachment, read) by using scripting techniques that drove

the actual iMessage user interfaces on OSX and iOS devices. Specifically, we used

ApplesScript to natively type text, paste images, and send/read messages on a Mac-

book Pro running OSX 10.9.1, and a combination of VNC remote control software
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Figure 3: Scatter plot of plaintext message lengths versus ciphertext lengths for packets containing
user content.

and AppleScript to control the same actions on a jailbroken iPhone 4 (iOS 6.1.4).

For each user action, we collected 250 packet capture examples on both devices and

in both directions of communications (i.e., to/from Apple) for a total of 5,000 sam-

ples. This allows us to simulate an adversary that can passively monitor streaming

iMessage traffic to or from Apple servers (steps 3 and 4 in Figure 2, respectively). In

addition, we also collected small samples of data using devices running iOS 5, iOS 7,

and OSX Mountain Lion to verify the observed trends.

The underlying text data is drawn from a set of over one million sentences and

short phrases in a variety of languages from the Tatoeba parallel translation corpus

[109]. Languages used in our evaluation include Chinese, English, French, German,

Russian, and Spanish. For attachment data, we randomly generated PNG images of

exponentially increasing size (64 x 64, 128 x 128, 256 x 256). Throughout the remain-

der of the section, we simply refer to attachments as “image" messages. Although

the Tatoeba dataset does not contain typical text message shorthand, it is generated

through a community of non-expert users (i.e., crowd-sourced) and so actually con-

tains several informal phrases that are not found in a typical language translation

corpus. In fact, the distribution of English message lengths in our data, as shown in

Table 2, is quite close to those reported in recent studies of text messaging behavior

by Battestini et al. [12], with our data exhibiting a slightly shorter average message
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Language Avg Length (σ)
chinese 13.3 (8.0)
english 40.0 (21.5)
french 41.1 (26.8)
german 41.5 (27.4)
russian 36.4 (27.4)
spanish 39.1 (21.9)
english text msgs [12] 50.9 (46.2)

Table 2: Language statistics for Tatoeba dataset compared to Battestini et al. text messaging
study.

length and less variability.

Each experiment in this section used 10-fold cross validation testing, where the

data for each instance in the test was constructed by sampling TCP payload lengths

and packet directions (i.e., to/from Apple) from the relevant subset of the packet cap-

ture files. Cross-validation testing was performed such that the classes were equally

represented in the sampled data (i.e., uniform prior probability across all classes).

The only preprocessing that was performed on the data was to remove duplicate

packets that occur as a result of TCP retransmissions and those packets without

TCP payloads. Performance of our classifiers is reported with respect to overall ac-

curacy, which is calculated as the sum of the true positives and true negatives over

the total number of samples evaluated. Where appropriate, we also use confusion

matrices that show how each of the test instances was classified and use absolute

error to measure the predictive error in our regression analysis.

3.2.2 Operating System

Our first experiment examines the difference in the observable packet sizes for the

iOS and OSX operating systems. The scatterplot of iMessage packet sizes in Figure 3

shows how iOS appears to more efficiently compress the plaintext, while OSX occupies

a much larger space. These two classes of data are clearly separable, but the figure also
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Figure 4: Distribution of payload lengths for each message type separated by operating system
without control packets.

shows five unique bands of plaintext/ciphertext relationship, which hints at leakage of

finer-grained information about the individual messages (which we examine in Section

3.2.4). Additionally, when we break down the distributions based on their direction

(i.e., to/from Apple), we see that there is a deterministic relationship between the

two. That is, as messages pass through Apple, 112 bytes of data are removed from

OSX messages and 64 bytes are removed from iOS messages. Aside from the ability

to fingerprint the OS version, the deterministic nature of these changes indicates that

it is also possible to correlate and trace communications as it passes through Apple on

the way to its destination, thereby allowing us to develop a communications graph.

To identify the OS of observed devices, we use a binomial naïve Bayes classi-

fier from the Weka machine learning library [59] with one class for each of the four

possible OS, direction combinations. The classifier operates on a binary feature vec-

tor of packet length, direction pairs, where the value for a given dimension is set

to “true" if that pair was observed and “false" otherwise. To determine the num-

ber of packet observations necessary for accurate classification, we run 10-fold cross-

validation experiments where the 1,024 instances used for each experiment are created

with N = 1, 2, . . . , 50 packets sampled from the appropriate subset of the dataset for

each OS, observation point class. The results indicate that we are able to accurately

classify the OS with 100% accuracy after observing only five packets regardless of

the operating system. A cursory analysis of iOS 5 and 7 indicates that they also
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Figure 5: Scatter plots of plaintext message lengths versus payload lengths for six languages in our
dataset.

produce messages with lengths that are unique from both the OSX and iOS 6.1.4 de-

vice, which indicates that this type of device fingerprinting could be refined to reveal

specific version information when the size of the APNS messages changes between OS

versions.

3.2.3 User Actions

Recall from our earlier discussion that there are five high-level user actions that we

can observe: start, stop, text, attachment (image), and read. Figure 4 shows the

distribution of payload lengths for each of these actions separated by the OS of the

sending device after removing control packets (i.e., packet sizes that occur within

multiple classes). Most classes have two distinctive packet lengths – one for when the

message is sent to Apple and one when it is received from Apple. The only classes

that overlap substantially are the read receipt and start messages in the iOS data

going to Apple.

The stability and deterministic nature of the lengths in most classes makes the
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OSX
control read start stop image text
1.0 0.0 0.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0 0.0 0.0
0.0 0.0 1.0 0.0 0.0 0.0
0.0 0.0 0.0 1.0 0.0 0.0
0.0 0.0 0.0 0.0 1.0 0.0
0.005 0.0 0.0 0.0 0.0 0.995

iOS
control read start stop image text
0.99 0.0 0.0 0.0 0.0 0.01
0.0 0.5 0.5 0.0 0.0 0.0
0.0 0.0 1.0 0.0 0.0 0.0

0.005 0.0 0.0 0.995 0.0 0.0
0.005 0.0 0.005 0.0 0.99 0.0
0.005 0.0 0.0 0.0 0.0 0.995

Table 3: Confusion matrix for message type classification.

use of probabilistic classifiers unnecessary. Instead of using heavyweight machine

learning methods, we create a hash-based lookup table using each observed length in

the training data as a key and store the associated class labels. In addition to creating

classes for the five standard message types derived from user actions, we also create a

class for the payload lengths of identified control packets. When a new packet arrives,

we check the lookup table to retrieve the class label(s) for its payload length. If only

one label is found, the packet is labeled as that message type. In the case where two

class labels are returned, we choose the class where that payload length occurs most

frequently in the training data.

In an effort to focus our evaluation, we assume that the OS has already been

accurately classified such that we have four separate message-type classifiers, one for

each combination of OS and direction. Each of the classifiers is evaluated using 10-

fold cross validation with instances drawn from the respective subsets of the dataset,

for a total of 1,250 instances per classifier. Confusion matrices showing the results for
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OSX and iOS are presented in Table 3. The accuracy is surprisingly good for both

iOS and OSX given such a simple classification strategy. As it turns out, all message

types can be classified with accuracy exceeding 99%, except for iOS read messages

that are easily confused with start messages, as was suggested by Figure 4.

3.2.4 Message Attributes

The final experiment in our analysis of information leakage examines if it is possible to

learn more detailed information about the contents of messages, such as their language

or plaintext length. The foundation for this experiment is built upon the observation

that Figure 3 (in Section 3.2.2) shows several distinct clusters when comparing plain-

text message length to payload length. While the clusters are most prevalent in the

OSX data, the iOS data also has a similar set of clusters (albeit more compressed).

When we separate this data into its constituent languages, as in Figure 5, the rea-

son for these clusters becomes clear. Essentially, each cluster represents a unique

character set used in the language (e.g., ASCII, Unicode). For languages that use

only a single character set, like English (ASCII), Russian (Unicode), or Chinese (Uni-

code), there is only one cluster approximating a linear relationship between plaintext

and payload lengths, with a “stair step" effect at AES block boundaries. The other

three languages all use some mix of ASCII and Unicode characters, resulting in an

ASCII cluster with better plaintext/payload length ratios, and Unicode cluster that

requires more payload bytes to encode the plaintext message. These graphs also help

to answer our question about the possibility of guessing the message lengths, which

is supported by the approximately linear relationship that appears.

To test our ability to classify these languages, we use the Weka multinomial naïve

Bayes classifier, with raw counts of each length, direction pair observed so that we

can take full advantage of the subtle differences in the distribution. As with previous
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Figure 6: Language classification accuracy.

experiments, we assume that earlier classification stages for OS and message type

were 100% accurate in order to focus specifically on this area of leakage. The results

from 10-fold cross validation on 1,024 instances generated from N = 1, 2, . . . , 50 text

message packets are shown in Figure 6. Classification of languages in OSX data is

noticeably better than iOS, as we might have expected due to compression. On the

OSX data, we achieve an accuracy of over 95% after 50 packets are observed. When

applied to the iOS data, on the other hand, accuracy barely surpasses 80% at the

same number of packets. However, as the confusion matrices in Table 4 show, by the

time we sample 100 packets all languages are achieving classification accuracies of at

least 93% regardless of the dataset.

Given that language classification can be achieved with high accuracy after a

reasonable number of observations, we now move on to determining how well we can

predict message lengths within those languages. For this task, we apply a simple

linear regression model using the payload length as the explanatory variable and the

message length as the dependent variable. The models are fitted to the training data

using least squares estimation. Again, we performed 10-fold cross validation with

1,024 instances and calculated the resultant absolute error. In general, the values

are small – an error of between 2 and 11 characters – when we consider that the

sentences in the language dataset range from two characters to several hundred, with
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OSX
chinese english french german russian spanish
1.0 0.0 0.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0 0.0 0.0
0.0 0.0 0.985 0.0 0.0 0.015
0.0 0.0 0.0 1.0 0.0 0.0
0.0 0.0 0.0 0.0 1.0 0.0
0.0 0.0 0.01 0.0 0.0 0.99

iOS
chinese english french german russian spanish
1.0 0.0 0.0 0.0 0.0 0.0
0.0 0.995 0.0 0.0 0.005 0.0
0.0 0.0 0.95 0.035 0.015 0.0
0.0 0.0 0.03 0.965 0.005 0.0
0.0 0.005 0.015 0.0 0.95 0.03
0.0 0.0 0.01 0.0 0.06 0.93

Table 4: Confusion matrix for language classification.

an average error of 6.27 characters. This is equivalent to an 18.4% average error

rate based on the statistics from Table 2. Those languages with multiple clusters,

like French and Spanish, fared the worst since the linear regression model could

not handle the bimodal behavior of the distribution for the multiple character sets.

For completeness, we also applied a regression model to the image transfers to and

from the Microsoft Azure cloud storage system. The regression model was extremely

accurate for the attachments, with an absolute error of less than 10 bytes.

3.3 Beyond iMessage

Thus far, we have focused our attacks exclusively on Apple iMessage, however we

note that they rely only on the user’s interaction with the messaging service and a

deterministic relationship between those actions and packet sizes. In effect, the at-

tacks target fundamental operations that are common to all messaging services. To

illustrate this concept, we used the same data generation procedures described in
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Figure 7: Distribution of payload lengths by type for WhatsApp, Viber, and Telegram.

Section 3.2.1 to examine the leakage of user actions and message information in the

WhatsApp, Viber, and Telegram messaging services. Figure 7 shows the distribution

of packet lengths associated with the user actions that we have considered through-

out this section for those services. Just as with Apple iMessage (c.f., Figure 4),

these three messaging services clearly allow us to differentiate fine-grained activities

by examining individual packet sizes. Moreover, when we examine the relationship

between plaintext message lengths and ciphertext length, as in Figure 8, there is a

clear linear relationship between the two.

Figures 7 and 8 illustrate two very important concepts in our study. First, it shows

that the same general strategies used to infer user actions, languages, and message

lengths can be used across many of the most popular messaging services regardless

of their individual choices in data encoding, protocols, and encryption. Second, it is

clear that WhatsApp and Viber provide even weaker protection against information

leakage than iMessage, since there are exact one-to-one relationships between packet

sizes and plaintext message lengths. Specifically, in Section 3.2.3, we mentioned that

Apple iMessage data showed a “stair step" pattern due to the AES block sizes used,

which naturally quantizes the output space and adds uncertainty to message length
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Figure 8: Scatterplot of plaintext message lengths versus payload lengths for WhatsApp, Viber,
and Telegram.

predictions, while Viber and WhatsApp allow us to exactly predict message length.

Telegram, with its use of end-to-end encryption technology, appears to be very similar

to iMessage in terms of its payload length distributions. Therefore, we can expect the

accuracy of the attacks will be at least as good as what was demonstrated on Apple

iMessage traffic.

To mitigate against such privacy failures, it is possible to apply standard padding-

based countermeasures. Apple iMessage and Telegram already implement a weak form

of countermeasure through packet sizes quantized at AES block boundaries. A much

more effective approach, however, would be to add random padding independently to

each packet up to the maximum observed packet length for each service, thereby de-

stroying any relationship to user actions. When implemented on our Apple iMessage

data, the random padding methodology reduced all of our attacks to an accuracy of

0% at the cost of 613 bytes (328%) of overhead per message for iOS and 596 bytes

(302%) for OSX. Although the absolute increase in size is rather small, we must con-
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sider that services like iMessage handle upwards of 2 billion messages every day, which

translates to an additional terabyte of network traffic daily. For the more popular

WhatsApp service, a similar increase would incur at least 4 terabytes of overhead.

Other countermeasure methods, such as traffic morphing [127], may actually provide

a more palatable trade-off between overhead and privacy, though further analysis is

beyond the scope of this initial study.
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4 Website Fingerprinting Countermeasures

Internet users rely on encrypted tunnels to keep their web browsing activities safe

from eavesdroppers. A typical scenario involves a user establishing an encrypted

tunnel to a proxy that then relays all subsequent HTTP traffic (in both directions)

through the tunnel. The use of encryption should hide the contents of the traffic and,

intuitively, the identity of the destination website(s). Yet modern encryption does

not obfuscate the length of underlying plaintexts, nor the number of plaintexts that

are encrypted. This information may seem harmless, but in fact it enables the range

of traffic analysis (TA) attacks discussed in Section 2.

One commonly suggested TA countermeasure is to hide the plaintext length by

adding padding prior to encryption. Padding countermeasures are standardized in

TLS, explicitly to “frustrate attacks on a protocol that are based on analysis of the

lengths of exchanged messages” [41]. Similar allowances for padding appear in SSH

and IPSec. More advanced countermeasures, such as traffic morphing [128], manipu-

late whole streams of packets in order to precisely mimic the distribution of another

website’s packet lengths.

The seemingly widespread intuition behind these countermeasures is that they

patch up the most dangerous side channel (packet lengths) and so provide good

protection against TA attacks, including website identification. Existing literature

might appear to support this intuition. For example, Liberatore and Levine [73] show

that padding packets to the network MTU (e.g., 1500 bytes) reduces the accuracy of

one of their attacks from 98% to 7%.

The results we present in this section challenge this intuition. We perform the

first comprehensive analysis of low-level countermeasures (e.g., per-packet padding)

for the kind of website identification attacks considered by prior work (c.f., [73, 127,
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60, 92]): a closed-world setting for privacy sets, in which the a priori set of possible

websites a user might visit is known to the attacker, coupled with the ability for

the attacker to train and test on traffic traces that are free of real-world artifacts

(e.g., caching effects, interleaved flows, and user-specific content). We consider nine

distinct countermeasures, apply them to two large, independent datasets of website

downloads, and pit the resulting obfuscated traffic against a total of seven different

attacks. The results are summarized in Figure 5. What we uncover is surprisingly

bleak:

None of the countermeasures are effective . We show that two classifiers —a

new naïve Bayes classifier called VNG++ and a support vector machine classifier

due to Panchenko et al. [92]— achieve better than 80% accuracy in identifying which

of k = 128 websites was visited in a closed-world experiment. (Random guessing

achieves 0.7% accuracy.) When k = 2 these classifiers achieve over 98% accuracy.

This holds for all nine countermeasures considered, including ones inspired by the

SSH, TLS and IPSec RFCs, and state-of-the-art ones such as traffic morphing [130].

Hiding packet lengths is not sufficient. We initiate a study of classifiers that do

not directly use fine-grained features such as individual packet lengths. The VNG++

classifier just mentioned uses only “coarse” information, including overall time, total

bandwidth, and size of bursts. In fact, we provide a naïve Bayes classifier that uses

only the total bandwidth for training and testing, yet still achieves greater than 98%

accuracy at k = 2 and 41% accuracy at k = 128. This implies that any effective

countermeasure must produce outputs that consume indistinguishable amounts of

bandwidth to be effective for the adversarial model we consider.
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Attack Classifier Features Considered k = 128 k = 775

Liberatore et al. [73] (LL) NB Packet lengths 25% 8%
Herrmann et al. [60] (H) MNB Packet lengths 3% 0%
Panchenko et al. [92] (P) SVM Packet lengths, Order 82% 63%

Total bytes
Time (TIME) NB Total trace time 9% 3%
Bandwidth (BW) NB Upstream/Downstream 41% 18%

total bytes
Variable n-gram (VNG) NB Bytes in traffic bursts 69% 54%
VNG++ NB Total trace time, 80% 61%

Upstream/Downstream
total bytes,

Bytes in traffic bursts

Table 5: Summary of attacks evaluated in our work. The Classifier column indicates the classifier
used: naïve Bayes (NB), multinomial naïve Bayes (MNB) or support vector machine (SVM.) The
Features Considered column indicates the features used by the classifier. The k = 128 and k = 775
columns indicate the classifier accuracy for a privacy set of size k.

Coarse information is unlikely to be hidden efficiently. Our coarse-feature at-

tacks, in particular the bandwidth-only attack, strongly suggest that resource-efficient

countermeasures will not (on their own) effectively hide website identity within a small

privacy set. So, we investigate an inefficient strawman countermeasure, Buffered

Fixed-Length Obfuscation (BuFLO, pronounced “buffalo”), that combines and makes

concrete several previous suggestions: it sends packets of a fixed size at fixed intervals,

using dummy packets to both fill in and (potentially) extend the transmission. We

subject it to the same analysis as the other countermeasures. This analysis shows

that should BuFLO fail to obfuscate total time duration and total bandwidth, then

attacks still achieve 27% accuracy at k = 128. With a bandwidth overhead of over

400%, we can, in theory, finally reduce k = 128 accuracy to 5%.

Relevance to other settings. While the adversarial model that we consider is

consistent with previous work, we admit that there are several factors (e.g., caching,

open-world identification) that are not captured. Indeed, these may reduce the effec-
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tiveness of the attacks, and improve countermeasure efficacy, in practice. There may

also be some other settings, such as Voice over IP (VoIP) traffic [130, 128, 129, 122],

where the nature of the application-layer protocol enables some countermeasures to

work very well. That said, the model considered in this section (and its predecessors)

is one that a general-purpose countermeasure ought to cover.

Finally, our analysis does not cover application-layer countermeasures such as

Camouflage [60] and HTTPOS [77], which both make intimate use of spurious HTTP

requests to help obfuscate traffic patterns. We suspect, however, that the lessons

learned here might help direct future analysis of application-layer countermeasures,

as well.
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4.1 Experimental Methodology

Like previous works [73, 127, 60, 92], our experiments simulate a closed-world setting

in which an adversary has access to the timing, lengths, and directionality of packets

sent over an encrypted HTTP tunnel (e.g., to or from a proxy server). We assume

secure encryption algorithms are used and no information can be learned from the

encrypted contents itself.

We base our simulation on two datasets that have been widely used by previous

works on web page identification. The Liberatore and Levine dataset [73] contains
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timestamped traces from 2,000 web pages. The Herrmann et al. [60] dataset contains

timestamped traces from 775 web pages. A trace is defined as a record of the lengths

and timings of ciphertexts generated by accessing a web page using an OpenSSH

single-hop SOCKS proxy. Please refer to the previous works [73, 60] for further

details about data collection methodology.

Each of our experiments is performed with respect to a particular classifier, a

particular countermeasure, and a specified set of n web pages. An experiment consists

of a number of trials; we will say in a moment how the particular number of trials is

determined. At the start of each experimental trial, we uniformly select a subset of

k ≤ n web pages to define the privacy set for that trial.2 Next we establish k sets

of 20 traces, one for each web page, as follows. For every web page in the data set,

there are m > 20 chronologically sorted sample traces. We select a random trace

index i ∈ {0, 1, . . . ,m− 19}, and take traces i, i+ 1, . . . , i+ 19 for each of the k web

pages. The first t = 16 of the traces from each of the k sets are used as the training

data for the classifier, and the remaining T = 4 traces form the testing data set.3 The

countermeasure is applied to both the training and testing data, and the classifier is

trained and then tested to determine its accuracy. Classifier accuracy is calculated as

(c/Tk), where c is the number of correctly classified test traces and k is our privacy

set size.

In each experiment, we perform 2(15−log2(k)) trials, so that there are a total of T·

215 test data points per experiment. We consider values of k ∈ {2, 4, 8, 16, 32, 64,

128, 256, 512, 775} in order to capture countermeasure performance across a number

of scenarios. Intuitively, smaller values of k present easier classification (attack)
2We do not believe the uniform distribution represents typical user web-browsing behavior. In

practice, we expect that biased sampling from the privacy set would further aid an attacker.
3We considered values of t ∈ {4, 8, 12, 16} and observed effects consistent with those reported by

Liberatore and Levine [73]: as t increases there was a consistent, modest increase in classification
accuracy.
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settings, and larger values of k present more difficult classifier settings.

We note that the engineering effort required to produce our results was substantial.

To aid future research efforts, the Python framework used for our experiments is

publicly available4.

4.2 Traffic Classifiers

A sequence of works detail a variety of TA attacks, in the form of classifiers that at-

tempt to identify the web page visited over an encrypted channel. These classifiers use

supervised machine learning algorithms, meaning they are able to train on traces that

are labeled with the destination website. Each algorithm has a training and a testing

phase. During training, the algorithm is given a set {(X1, `1), (X2, `2), . . . , (Xn, `n)},

where eachXi is an vector of features and `i is a label. During testing the classification

algorithm is given a vector Y and must return a label. In our case, a vector Xi con-

tains information about the lengths, timings, and direction of packets in the encrypted

connection containing a web page `i, and the format of a vector Xi is dependent upon

the classifier. In the remainder of this section, we present a high-level overview of

the operation of the three published classifiers that we use in our evaluation, and we

refer interested readers to more detailed descriptions elsewhere [84, 73, 60, 92].

4.2.1 Liberatore and Levine Classifier

Liberatore and Levine [73] (LL) proposed the use of a naïve Bayes classifier (NB) to

identify web pages using the direction and length of the packets. The naïve Bayes

classifier determines the conditional probability Pr (`i|Y ) for a given vector of features

Y using Bayes’ rule: Pr (`i|Y ) = Pr(Y |`i) Pr(`i)
Pr(Y )

. The probability is computed for all

labels `i with i = {1, 2, . . . , k} and k representing the size of the privacy set (or
4http://www.kpdyer.com/
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number of labels being considered), and the label with the highest probability is

selected as the classifier’s guess. The probability Pr (Y |`i) is estimated using kernel

density estimation over the example feature vector provided during training, and

Pr(`i) is assumed to be 1/k. The feature vectors used by the LL classifier are derived

from the count of the lengths of the packets sent in each direction of the encrypted

connection. Specifically, the feature vector contains 2 · 1449 = 2898 integers that

represent the number of packets seen in the given vector with each of the potential

direction and packet length combinations (i.e., {↑, ↓}×{52, . . . , 1500}). For example,

if we observe a packet of length 1500 in the ↓ direction (e.g., server to client) we would

increment the counter for (↓,1500).

4.2.2 Herrmann et al. Classifier

Herrmann, Wendolsky and Fedarrath [60] (H) take a similar approach to Liberatore

and Levine, however they make use of a multinomial naïve Bayes (MNB) classifier.

Like the naïve Bayes classifier with density estimation, the multinomial naïve Bayes

classifier attempts to estimate the probability Pr (`i|Y ) for each of the i = {1, 2, . . . , k}

potential labels and the given feature vector Y . The key difference is that the multino-

mial classifier does not apply density estimation techniques to determine the probabil-

ity Pr (Y |`i), but instead uses the aggregated frequency of the features (i.e., normal-

ized distribution) across all training vectors. Thus, the H classifier uses normalized

counts of (direction, length), whereas the LL classifier examined raw counts. Further-

more, Herrmann et al. suggest a number of approaches for normalizing these counts.

For our evaluation, we combine term frequency transformation and cosine normaliza-

tion, as these were identified by Herrmann et al. to be the most effective in the SSH

setting.
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4.2.3 Panchenko et al. Classifier

Panchenko et al. [92] (P) take a completely different approach by applying a sup-

port vector machine (SVM) classifier to the problem of identifying web pages. A

support vector machine is a type of binary linear classifier that classifies points in

a high-dimensional space by determining their relation to a separating hyperplane.

In particular, the SVM is trained by providing labeled points and discovering a hy-

perplane that maximally separates the two classes of points. Classification occurs by

determining where the point in question lies in relation to the splitting hyperplane.

Due to the complexity of SVM classifiers, we forego a detailed discussion of their

various parameters and options.

We configure our SVM as follows. We use the same radial basis function (RBF)

kernel as Panchenko et al. with parameters of C = 217 and γ = 2−19. The P classifier

uses a wide variety of coarse and detailed features of the network data mostly derived

from packet lengths and ordering. Some of these features include the total number of

bytes transmitted, total number of packets transmitted, proportion of packets in each

direction, and raw counts of packet lengths. There are also several features known

as “markers" that delineate when information flow over the encrypted connection has

changed direction. These markers aggregate bandwidth and number of packets into

discrete chunks. Each of the features considered by the P classifier are rounded and all

52 byte TCP acknowledgement packets are removed to minimize noise and variance

in the training and testing vectors.

4.3 Countermeasures

For ease of exposition and analysis, we organize the considered countermeasures into

three categories: those that are inspired by the padding allowed within the SSH, TLS
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and IPSec standards (Type-1); other padding-based countermeasures (Type-2); and

countermeasures that make explicit use of source and target packet-length distribu-

tions (Type-3). In what follows, we describe the operation of the countermeasures

we evaluate and discuss the overhead they generate. Lengths are always measured in

bytes.

4.3.1 Type-1: SSH/TLS/IPSec-Motivated Countermeasures

A common suggestion, already used in some implementations, like GnuTLS5, is to

obfuscate plaintext lengths by choosing random amounts of extra padding to append

to the plaintext prior to encryption. SSH, TLS and IPSec allow up to 255 bytes

of padding in order to align the to-be-encrypted plaintext with the underlying block

cipher boundary, and also to provide some obfuscation of the original plaintext length.

We consider two ways in which this might be implemented within SSH/TLS/IPSec:

(1) choose a single random amount of padding to be applied across all plaintexts in

the session, or (2) choose a random amount of padding for each plaintext.

Session Random 255 padding: A uniform value r ∈ {0, 8, 16 . . . , 248} is sampled and

stored for the session.6 Each packet in the trace has its length field increased by r,

up to a maximum of the MTU.

Packet Random 255 padding: Same as Session Random 255 padding, except that a

new random padding length r is sampled for each input packet.

We note that our simulation of Session Random and Packet Random padding in

this setting are not exactly what would be implemented in reality because we do

not have access to the size of the plaintext data from the datasets available to us.
5http://www.gnu.org/software/gnutls/
6We assume that the underlying encryption block size is 8 bytes. For the Liberatore and Levine

dataset, we know this assumption is true. We do not expect classification accuracies to be different
if, in fact, the block size was 16 bytes.

34



www.manaraa.com

Instead, our assumption is that the plaintext data is sufficiently short to fit into a

single TCP packet and therefore is closely approximated by simply adding the padding

to the length of the ciphertext. What we simulate, therefore, is likely to overstate

the efficacy of the countermeasure since the (at most) 255 bytes of padding would be

dominated by the true size of the plaintext (e.g., up to 214 bytes for TLS), thereby

providing relatively little noise. In contrast, our simulation allows for a much larger

ratio of plaintext to padding, which in turn adds significantly more noise.

4.3.2 Type-2: Other Padding-based Countermeasures

The second class of countermeasure we consider are those padding mechanisms that

are not easily supported in existing encrypted network protocol standards due to the

amount of padding added. In this scenario, we assume the countermeasure will be

capable of managing fragmentation and padding of the data before calling the en-

cryption scheme. Most of the countermeasures considered by prior work fall into this

category, though we also consider a randomized scheme that has not been previously

explored.

Linear padding: All packet lengths are increased to the nearest multiple of 128, or

the MTU, whichever is smaller.

Exponential padding: All packet lengths are increased to the nearest power of two,

or the MTU, whichever is smaller.

Mice-Elephants padding: If the packet length is ≤ 128, then the packet is increased

to 128 bytes; otherwise it is padded to the MTU.

Pad to MTU: All packet lengths are increased to the MTU.

Packet Random MTU padding: Let M be the MTU and ` be the input packet length.
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For each packet, a value r ∈ {0, 8, 16, . . . , M− `} is sampled uniformly at random and

the packet length is increased by r.

4.3.3 Type-3: Distribution-based Countermeasures

Wright et al. [127] presented two novel suggestions as improvements upon tradi-

tional per-packet padding countermeasures: direct target sampling (DTS) and traffic

morphing (TM). On the surface, both techniques have the same objective. That

is, they augment a protocol’s packets by chopping and padding such that the aug-

mented packets appear to come from a pre-defined target distribution (i.e., a different

web page). Ideally, DTS and TM have security benefits over traditional per-packet

padding strategies because they do not preserve the underlying protocol’s number of

packets transmitted nor packet lengths. Although the full implementations details

of DTS and TM are beyond scope of this section (see [127]), we give a high-level

overview here.

Direct target sampling: Given a pair of web pages A and B, where A is the source

and B is the target, we can derive a probability distribution over their respective

packet lengths, DA and DB. When a packet of length i is produced for web page A,

we sample from the packet length distribution DB to get a new length i′. If i′ > i, we

pad the packet from A to length i′ and send the padded packet. Otherwise, we send

i′ bytes of the original packet and continue sampling from DB until all bytes of the

original packet have been sent. Wright et al. left unspecified morphing with respect

to packet timings. We assume a negligible overhead to perform morphing and specify

a 10ms inter-packet delay for dummy packets.

In our experiments, we select the target distribution uniformly at random from

our set of k potential identities. The selected web page remains unchanged (i.e., no

countermeasures applied), while the remaining k − 1 web pages are altered to look
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Overhead (%)
Countermeasure LL H
Session Random 255 9.0 7.1
Packet Random 255 9.0 7.1
Linear 4.2 3.4
Exponential 8.7 10.3
Mice-Elephants 41.6 39.3
Pad to MTU 81.2 58.1
Packet Random MTU 40.1 28.8
Direct Target Sampling 86.4 66.5
Traffic Morphing 60.8 49.8

Table 6: Bandwidth overhead of evaluated countermeasures calculated on Liberatore and Levine
(LL) and Herrmann et al. (H) datasets.

like it. After the source web page has stopped sending packets, the direct target

sampling countermeasure continues to send packets sampled from DB until the L1

distance between the distribution of sent packet lengths and DB is less than 0.3.

Traffic morphing: Traffic morphing operates similarly to direct target sampling

except that instead of sampling from the target distribution directly, we use convex

optimization methods to produce a morphing matrix that ensures we make the source

distribution look like the target while simultaneously minimizing overhead. Each

column in the matrix is associated with one of the packet lengths in the source

distribution, and that column defines the target distribution to sample from when

that source packet length is encountered. As an example, if we receive a source

packet of length i, we find the associated column in the matrix and sample from its

distribution to find an output length i′. One matrix is made for all ordered pairs of

source and target web pages (A,B). The process of padding and splitting packets

occurs exactly as in the direct target sampling case. Like the direct target sampling

method, once the source web page stops sending packets, dummy packets are sampled

directly from DB until the L1 distance between the distribution of sent packet lengths

and DB is less than 0.3. In our simulations we select a target distribution using the
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LL H P

k = 2
Type-1 85% 71% 99%
Type-2 97% 80% 99%
Type-3 98% 76% 99%

k = 128
Type-1 41% 13% 91%
Type-2 46% 5% 90%
Type-3 25% 3% 82%

Table 7: The lowest average accuracy for each countermeasure class against LL, H, and P classifiers
using the Hermann dataset. Random guessing yields 50% (k = 2) or 0.7% (k = 128) accuracy.

same strategy described for DTS.

4.3.4 Overhead

Although the focus of our evaluation lies in understanding the security provided by

these countermeasures, we realize that their cost in terms of bandwidth overhead and

latency is an important factor that determines whether they are applicable in practice

or not. To this end, we present the bandwidth overhead induced by the countermea-

sures for both the Liberatore and Levine and Herrmann et al. datasets in Figure 6.

Overhead is calculated as (bytes sent with countermeasure)/(bytes sent without coun-

termeasure) times 100. We note that these overhead measurements differ from those

of earlier work because we do not apply countermeasures to TCP acknowledgement

(52-byte) packets. For example, Liberatore and Levine [73] report a Pad to MTU

overhead of 145% and Wright et al. [127] report 156%. We argue that acknowledge-

ment packets are present regardless of the content being downloaded and there is no

standard mechanism for application-layer countermeasures to apply padding to TCP

acknowledgement (52-byte) packets. Nevertheless, as we will see in the following sec-

tion, there is almost no correlation between overhead and the level of confidentiality

provided by the countermeasure.
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Figure 9: Comparison of accuracy silhouettes for the Liberatore and Levine and Herrmann datasets
across all countermeasures for the LL, H, and P classifiers, respectively.

4.4 Existing Countermeasures versus Existing Classifiers

We pit the LL, H, and P classifiers from Section 4.2 against traffic simulated as per

the nine countermeasures of the previous section. The testing methodology used was

described in Section 4.1. We also look at classifiability of the raw traffic, meaning

when no countermeasure (beyond the normal SSH encryption) is applied.

We note that despite the appearance of the LL, H, and P classifiers in the liter-

ature, all the results we report are new. In particular, the H and P classifiers were

never tested against any of these countermeasures, while the LL classifier did look at

efficacy against Linear, Exponential, Mice-Elephants, and Pad to MTU but only at

k = 1000. Figure 7 contains a high-level summary for k = 2 and k = 128. We refer

the interested reader to Appendix B for comprehensive results.

In the rest of this section we analyze the results from various points of view,

including the role of the dataset, the relative performance of the classifiers, and the

relative performance of the different countermeasures.

4.4.1 Comparing the Datasets

Before beginning digging into the results in earnest, we first evaluate the consistency

and quality of the two available datasets. We do so to determine the extent to which
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results gathered using them represent the identifiability of the web pages rather than

artifacts of the collection process, such as connection timeouts and general collection

failures. In Figure 9, we show the silhouette of the accuracy achieved by the three

classifiers across a number of universe sizes and countermeasures using each of the

datasets. That is, the lower boundary of each silhouette is the best-performing coun-

termeasure while the upper boundary represents the worst-performing (which turned

out to always be no countermeasure, as one would expect).

Ideally, the classifier accuracies should be roughly similar, or at least show similar

trends. Instead, what we notice is a trend toward strong drops in performance as the

web page universe size increases in the Liberatore dataset, whereas in the Herrmann

dataset we see a much smoother drop across multiple universe sizes and across all

classifiers. This is most notable under the P classifier (far right of Figure 9).

To take a closer look at the differences between the datasets, we report some basic

statistics in Figure 8. The fraction of traces that have short duration, particularly

ones that are clearly degenerate (≤ 10 packets), is much higher in the Liberatore

dataset. Such degenerate traces act as noise that leads to classification errors. We

suspect that they arise in the dataset due to collection errors (e.g., incomplete web-

site visits), and may imply that some previous works [73, 127] may underestimate the

privacy threat posed by web page traffic analysis attacks. Despite the extra noise,

the classifiers performed well, just consistently lower at high values of k as com-

pared to the Herrmann dataset. In addition, the Herrmann dataset was collected in

2009, as opposed to the Liberatore dataset, which was collected in 2006. Despite all

these differences we found the high-level trends and conclusions are the same across

both datasets. For these reasons, we will focus our analysis only on the Herrmann

dataset for the remainder of this section. Appendix B contains details for classifier

performance using the Liberatore dataset at k = 128.
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LL H
Traces with 0 packets in one direction 3.1% 0.1%
Traces with ≤ 5 bidirectional packets 5.2% 0.2%
Traces with ≤ 10 bidirectional packets 13.8% 0.4%
Traces with ≤ 1s duration 29.4% 6.4%
Median trace duration 2.4 sec. 3.6 sec.
Median bidirectional packet count 106 256
Median bandwidth utilization (bytes) 78,382 235,687

Table 8: Statistics illustrating the presence of degenerate or erroneous traces in the Liberatore and
Levine and Hermann datasets.

4.4.2 Comparison of Classifiers

Figure 10 gives a three-by-three grid of graphs: one column per classifier and one row

for countermeasure type. We start by quickly comparing the relative performance

of the three classifiers, which is observable by comparing the performance across the

three columns.

The first thing to notice is that at k = 2, essentially all of the classifiers do well

against all of the countermeasures. The LL and P classifiers are particularly strong,

even against the DTS and TM countermeasures. The overall best classifier is clearly

the P classifier. It is robust to all the countermeasures. The H classifier edges out

both the P and LL classifiers for raw traffic, but is very fragile in the face of all but

the simplest countermeasure (Linear padding). The LL classifier proves more robust

than the H classifier, but has more severe accuracy degradation compared to P as k

increases.

4.4.3 Comparison of Countermeasures

Consider the first row of Figure 10, where we see a comparison of the two Type-1

randomized padding schemes. Curiously, it is better to pick a single random padding

amount to apply to each packet within a trace than to pick fresh random amounts per
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Figure 10: Average accuracy as k varies for the LL (left column), H (middle column), and P (right
column) classifiers with respect to the Type-1 (top row), Type-2 (middle row), and Type-3 (bottom
row) countermeasures. The dotted gray line in each graph represents a random-guess adversary.

packet. Applying a single random amount across all packets shifts the distribution

of packet lengths in a way that is unlikely to have been seen during training. On the

other hand, randomizing per packet “averages out” during training and testing.

Common intuition about the Pad to MTU countermeasure is that it ought to work

well against TA attacks since it ensures that no individual packet length information

is leaked. However, as we seen in the second row of Figure 10, we see this intuition is

wrong in large part because the number of packets is still leaked. The LL classifier, for

example, exploits this fact, since it trains on the number of packets of each (direction,

length). When the packets are padded to the MTU, there are only two numbers,
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Figure 11: Comparison of the overall best performing countermeasure of each type against the LL,
H, and P classifiers.

namely for (↑,1500) and (↓,1500). The LL classifier does well because the number of

packets transmitted is relatively consistent across traces for a particular web page.

(We will investigate this more in the next section.) This also is our first evidence that

exact packet-length information is not necessary for high-accuracy classification.

Next, we turn to the Type-3 countermeasures. Recall that these countermeasures

focus on altering a specific feature of the web page traffic, namely the distribution

of normalized counts, so that one web page looks like another with respect to that

feature. In theory then, the distribution of packets produced by the DTS and TM

countermeasures should match that of the target web page and, unlike Type-1 and

Type-2 countermeasures, the number of packets from the source web page should be

concealed, in part. This is not true in all cases, however, as Type-3 countermeasures

do not substantially change the total bandwidth of data transmitted in each direc-

tion, nor the duration of the trace with regards to time. In fact, no countermeasure

considered here substantially changes the total bandwidth. Moreover, these coun-

termeasures do not hide “burstiness” of the data, which may be correlated to higher

level structure of the underlying HTTP traffic (e.g., a downstream burst represents

a web page object). Therefore, DTS and TM perform best against the H classifier,

which examines the same normalized packet count distribution, while the P classifier

performs particularly well with its use of packet burst information.
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Figure 12: Each scatterplot is a visual representation of the first fifty traces, from the first five
websites in the Herrmann dataset. Each symbol of the same shape and color represents the same
web page. (left) Distribution of traces with respect to duration in seconds. (middle) Distribution
of traces with respect to bandwidth utilization, where we distinguish the upstream and downstream
directions. (right) Distribution of traces with respect to the number of bursts per trace.

We compare the best countermeasure from each type in Figure 11: Session Ran-

dom 255 (Type-1), Pad to MTU (Type-2), and DTS (Type-3). A few surprises arise

in this comparison. First, Session Random 255 performs better or about the same

as Pad to MTU. This is surprising, as Session Random 255 is a significantly lighter-

weight countermeasure. It has only 7% overhead compared to Pad to MTU’s 58%,

and can potentially be dropped into existing deployments of SSH and TLS. That said,

even at k = 128, it is unlikely to be satisfying to drop accuracy only down to 90%.

DTS does better than the others across all values of k against the best classifier (P),

but we note that simpler countermeasures actually can do a better job against the

LL and H classifiers for lower k values.

4.5 Exploring Coarse Features

Our study of existing classifiers reveals that some fine-grained features, such as indi-

vidual packet lengths, are not required for high-accuracy classification. Indeed, the

fact that the P classifier performs so well against the Pad to MTU countermeasure

means that it is using features other than individual packet lengths to determine clas-

sification. This leads us to the following question: Are coarse traffic features sufficient
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for high-accuracy classification?

To answer this question, we explore three coarse features: total transmission time,

total per-direction bandwidth, and traffic “burstiness”.7 From these features we build

the time (TIME), bandwidth (BW), and the variable n-gram (VNG) classifier using

naïve Bayes as our underlying machine learning algorithm. See Figure 13 for a visual

summary of their performance. Later, we put these three coarse features together,

and build the VNG++ naïve Bayes classifier. We will see that VNG++ is just as

accurate as the (more complex) P classifier.

4.5.1 Total Time

We begin with the most coarse and intuitively least useful feature, the total timespan

of a trace. How much do traces differ based on total time? The left-most plot in

Figure 12 depicts the time of the first 50 traces from five websites in the Herrmann

dataset. There is clear regularity within traces from each website, suggesting relatively

low variance for this feature.

To test the usefulness of total time in classification, we implemented a naïve

Bayes classifier that uses time as its only feature. This simple time-only classifier is

quite successful for small k, as shown in Figure 13. At k = 2, it is able to achieve

better than an 80% average accuracy against the three best countermeasures from

each class as determined by performance on the P classifier. As the privacy set

increases, the likelihood of multiple websites having similar timing increases, and so

the accuracy of the time classifier goes down. At k = 775, it achieves only about

3% accuracy, although this is still substantially better than random guessing (0.1%)

and may provide value as a supplementary feature in order to increase a classifier’s

accuracy.
7We note that these features are more coarse than individual packet lengths, in the sense that

knowing the latter likely implies knowing the former, but not the other way around.
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Figure 13 also shows that the time classifier performs roughly the same against

raw traffic (i.e., the “None” countermeasure) and with traffic countermeasures applied.

As one might expect padding-based countermeasures (Type-1 and Type-2), do not

directly modify the total time taken by traces. On the other hand, distribution-based

countermeasures (Type-3) potentially inject dummy packets into a trace, but this is

most often no more than 10-12 packets sent in quick succession. Thus, these also do

not change the total time significantly.

4.5.2 Total Per-Direction Bandwidth

Next, we turn to total bandwidth consumed per direction. We see the consistency

of total bandwidth in the center plot in Figure 12, which displays the upstream and

downstream bandwidths of the first 50 traces of five websites from the Herrmann

dataset. This plot shows a clear clustering of the websites with both very low vari-

ance within website clusters and high degrees of separability (i.e., spacing) between

clusters.

Therefore, we expect bandwidth-based classification will work well as long as

websites within the privacy set do not have too much overlap in terms of total per-

direction bandwidth. Figure 13 shows that, indeed, the bandwidth classifier performs

well. In fact, the real surprise is just how well the bandwidth-only classifier works for

all privacy set sizes despite the coarse nature of the feature. At k = 2, the classifier

provides close to perfect accuracy of over 99% against all countermeasures. Moreover,

compare the behavior of the bandwidth-only classifier to that of the LL and H clas-

sifiers (c.f., Figure 11), which do not use bandwidth as a feature, as k increases. The

bandwidth classifier is clearly more robust to changes in privacy set size. This might

seem surprising, since countermeasures such as Pad to MTU and Session Random

255 should, intuitively, obfuscate bandwidth usage. They do, but these per-packet
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Figure 13: The average accuracy against the raw encrypted traffic (None), and the best counter-
measures from each type, as established in Section 4.4. (left) the time-only classifier. (middle) the
bandwidth only classifier. (right) the VNG (“burstiness”) classifier.

paddings only add noise to the low order bits of total bandwidth. Specifically, the

change to bandwidth usage is too small relative to what would be needed to make

two websites’ bandwidths likely to overlap significantly. This is true for all of the

padding-based countermeasures (Type-1 and Type-2). Distribution-based counter-

measures DTS and TM, however, offer the best resistance to the bandwidth classifier

for higher k values. Here, they outpace other countermeasures by several percentage

points. This seems to be due to the insertion of dummy packets, which can add more

noise than per-packet padding for total bandwidth use.

4.6 Variable n-gram

The time and bandwidth features already provide impressive classification ability

despite their coarse nature, but do not yet give the accuracy that the Panchenko

classifier achieves. We therefore look at a third feature, that of burst bandwidth.

A burst is a sequence of non-acknowledgement packets sent in one direction that lie

between two packets sent in the opposite direction. The bandwidth of a burst is the

total size of all packets contained in the burst, in bytes. For instance, if we have a

trace of the form

(↑, 100), (↓, 1500), (↓, 100), (↑, 200), (↑, 300)
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Classifier
Countermeasure P P-NB VNG++
None 97.2± 0.2 98.2± 0.9 93.9± 0.3

Session Random 255 90.6± 0.3 59.1± 2.3 91.6± 0.3

Packet Random 255 94.9± 0.3 93.7± 1.6 93.5± 0.3

Linear 96.8± 0.2 96.9± 1.1 94.3± 0.3

Exponential 96.6± 0.3 97.4± 0.9 94.8± 0.3

Mice-Elephants 94.5± 0.6 95.1± 0.8 91.7± 0.4

Pad to MTU 89.8± 0.4 91.7± 1.5 88.2± 0.4

Packet Random MTU 92.1± 0.3 84.1± 1.7 87.6± 0.3

Direct Target Sampling 81.8± 0.5 76.8± 2.5 80.2± 0.5

Traffic Morphing 88.7± 0.4 82.6± 5.6 85.6± 0.7

Table 9: Accuracies (%) of P, P-NB, and VNG++ classifiers at k = 128.

then there are three bursts with bandwidth 100, 1600, and 500. The intuition under-

lying this is that bursts correlate with higher-level properties of the traffic, such as

individual web requests. This observation was first made by Panchenko et al. [92].

The right-most plot in Figure 12 shows the number of bursts for each of the first 50

traces for five websites in the Herrmann dataset. Even the number of bursts correlates

strongly with the web page visited. Although this relatively limited information is

capable of providing some classification ability, it turns out that burst bandwidths

prove even more powerful.

Recalling that an n-gram model would coalesce n packets together into one fea-

ture, we can view bandwidth bursts as a variable n-gram model in which n varies

across the trace. Then, our VNG (Variable n-Gram) classifier partitions a trace into

bursts, coalesces packets into variable n-grams described by (direction, size) pairs,

rounds the resulting sizes up to the nearest multiple of 600 bytes8, and then applies

a naïve Bayes classifier. Figure 13 shows how well the VNG classifier performs, al-

ready achieving better than 80% accuracy for all padding-based countermeasures, and
8Panchenko et al. experimentally determine this rounding value as a way to maximize classifica-

tion accuracy via dimensionality reduction.
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achieving significantly higher accuracy levels for distribution-based approaches than

any other classifier except the P classifier.

4.6.1 Combining Coarse Features: the VNG++ Classifier

To extract all potential identifying information from these coarse features, we combine

the time, bandwidth, and variable n-gram classifiers to give a simple, yet impressively

effective, classifier that dispenses with use of individual packet lengths for classifica-

tion. Specifically, we use total time, bandwidth in each direction of the connection,

and variable n-grams as features of a naïve Bayes classifier. A graph of the VNG++

classifier’s accuracy as k varies is given in Figure 14.

In comparing VNG++ to the P classifier, we note that the latter uses a large

assortment of features (as discussed in Section 4.2), including fine-grained ones such

as frequency of individual packet lengths. It also applies a more complicated machine

learning algorithm in the form of an SVM. Figure 14 depicts the performance of the P

and VNG++ classifiers against the best performing countermeasures of each type, as

well as data with no countermeasure applied. Note that for clarity the y-axis starts at

50%, unlike other graphs. From this figure, two clear trends arise. First, VNG++’s

performance against no countermeasure degrades slightly faster with k than the P

classifier. This highlights that fine-grained features can provide some small benefit in

classifying unprotected traces. Second, when we consider countermeasures, VNG++

matches P in performance. This holds despite the use of fewer features and the

simpler machine learning algorithm used by the former. As it turns out, in the face of

countermeasures, the coarse features are the damaging ones and fine-grained features

are not particularly helpful.

A final question lingers: does using an SVM provide any advantage over a naïve

Bayes classifier? We implemented a naïve Bayes version of the P classifier. This
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Figure 14: Accuracy of P (left) and VNG++ (right) classifiers against the best-performing coun-
termeasures from Section 4.2.

P-NB classifier uses a 1-1 mapping of the features used by P to analogues suitable

for use with a naïve Bayes classifier. A comparison of performance at k = 128 for

P, P-NB, and VNG++ are given in Figure 9. Overall, we see that the results are

consistent across all three classifiers. A single exception is the accuracy of P-NB for

Session Random 255, which results in a surprisingly low classifier accuracy.

4.6.2 Discussion

The nine countermeasures considered so far attempt to obfuscate leaked features of

the traffic via padding and insertion of dummy packets. As we’ve seen, however,

these fail to protect significant amounts of identifying information from being leaked

from coarse features of the encrypted traffic, rather than the fine-grained, per-packet

features typically targeted by TA countermeasures. Unfortunately, these kinds of

features are precisely the ones that are most difficult to efficiently hide.

Obfuscating total bandwidth is an obvious case in point. To prevent this fea-

ture from leaking information, a countermeasure must ensure a similar amount of

bandwidth use across all websites in any given privacy set. Since we do not want

to forego functionality (e.g., shutting down connections prematurely), this translates

into a countermeasure that inserts dummy traffic until we achieve a total bandwidth

close to that of the maximum bandwidth usage of any website in the privacy set.
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Hiding burst bandwidth is also problematic. As seen in Figure 12, different web-

sites can have quite different patterns of bursts. A countermeasure must smooth out

these patterns. In theory, a traffic morphing-like countermeasure can attempt to im-

itate a target trace’s burst patterns, however this will require buffering packets for

potentially long periods of time. Thus, countermeasures for preventing website traffic

analysis must incur both bandwidth and latency overheads.

In all, our analyses leaves little wiggle room for countermeasures to operate within.

Providing robust protection against fingerprinting attacks for arbitrary websites in a

closed-world setting, such as the one presented here, is going to have to be inefficient.

4.7 BuFLO: Buffered Fixed-Length Obfuscator

Our analysis thus far leaves us with the conclusion that, despite the long line of work

on TA attacks and countermeasures, we have no packet-oriented countermeasure that

prevents website fingerprinting attacks. We therefore want to know whether any

measure can work, even prohibitively inefficient ones.

Following the analysis of the last section, we know that any effective countermea-

sure must hide the total time, bandwidth use, and burst patterns. To that end, we

consider a new countermeasure Buffered Fixed-Length Obfuscator, or BuFLO. It is

a realization of the “fool-proof” folklore countermeasure that, intuitively, should de-

feat any TA classifier by removing all side-channel information. BuFLO operate by

sending fixed-length packets at a fixed interval for at least a fixed amount of time.

If a flow goes longer than the fixed time out, BuFLO lets it conclude while still

using fixed-length packets at a fixed interval. In an ideal implementation, BuFLO

will not leak packet lengths or packet timings, and so BuFLO should do a good job

at closing side-channels that enable TA classifiers. This type of countermeasure has

been investigated in the context of other TA attacks, such as those on anonymity
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networks [118, 140]

Our simulation-based analysis of BuFLO provides some positive evidence for

packet-level countermeasures, but in fact our results here are mostly negative, thereby

reinforcing the lessons learned in prior sections. BuFLO is, as one might expect, in-

credibly inefficient. Moreover, we will see that even mild attempts to claw back

some efficiency can fail: setting the minimum session too aggressively short opens up

vulnerability to our coarse-feature classifiers.

Finally, we note that our BuFLO countermeasure has been explored further in

a number of follow on works [22, 90, 23], after the publication [47] of these initial

results.

4.7.1 BuFLO Description

A BuFLO implementation is governed by three integer parameters d, ρ and τ :

• Parameter d determines the size of our fixed-length packets.

• Parameter ρ determines the rate or frequency (in milliseconds) at which we send

packets.

• Parameter τ determines the minimum amount of time (in milliseconds) for

which we must send packets.

A BuFLO implementation at the start of communications will send a packet of

length d every ρ milliseconds until communications cease and at least τ millisec-

onds of time have elapsed. Specifically, data is buffered into discrete chunks, and

these chunks are sent as quickly as possible via the steady flow of the fixed-length

packets. When no data is in the buffer, dummy data is sent instead. This assumes

that the application-layer signals the start and end of communication. Alternatively,

we could have chosen τ as an upper bound on the duration of our communications
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session and forcibly close the connection even if communications are still in progress.

This would disable any websites that take longer to load, making it unlikely to be a

pragmatic choice.

4.7.2 Experiments

In this section, we examine BuFLO for various parameters using the Hermann dataset

and provide detailed results in Appendix A. Since we are using a simulation-based

experiment, these results reflect an ideal implementation that assumes the feasibility

of implementing fixed packet timing intervals. This is at the very least difficult in

practice [52] and clearly impossible for some values of ρ. Simulation also ignores the

complexities of cross-layer communication in the network stack, and the ability for the

BuFLO implementation to recognize the beginning and end of a data flow. If BuFLO

cannot work in this setting, then it is unlikely to work elsewhere, aiding us in our

exploration of the goal of understanding the limits of packet-level countermeasures.

We evaluated BuFLO empirically with parameters in the ranges of τ ∈ {0, 10000}, ρ ∈

{20, 40} and d ∈ {1000, 1500}. The least bandwidth-intensive configuration, at τ =

0, ρ = 40 and d = 1000 would require at least 0.2 Mbps of continuous synchronous

client-server bandwidth to operate9. Surprisingly, with this BuFLO configuration

and a privacy set size of k = 128, the P classifier still identifies sites with an average

accuracy of 27.3%. This is compared to 97.5% average accuracy with no counter-

measure applied. At the other extreme of our experiments with τ = 10000, ρ = 20

and d = 1500 it would require at least 0.6 Mbps of synchronous client-server band-

width to operate. Here, the P classifier can still identify sites with a privacy set size

of k = 128 with an average 5.1% accuracy.

9Calculated by
(

1000
ρ

)
·
(

8d
106

)
.
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4.7.3 Observations about BuFLO

BuFLO cannot leak packet lengths, nor can it leak packet timings. Yet, our experi-

ments indicate that an aggressively configured BuFLO implementation can still leak

information about transmitted contents. This is possible because BuFLO can leak

total bytes transmitted and the time required to transmit a trace in two circumstances:

• The data source continued to produce data beyond the threshold τ .

• The data source ceases to produce data by the threshold τ , but there is still

data in the buffer at time τ .

The first situation can occur if our our threshold τ is not sufficiently large to accom-

modate for all web pages that we may visit. The latter situation occurs when values ρ

and d are not sufficiently configured to handle our application’s data throughput, such

that we transmit all data by time τ .

What is more, in some circumstances an inappropriately configured BuFLO im-

plementation can can actually benefit an adversary. At k = 128 with τ = 0, ρ = 40

and d = 1000 (see Figure 18) the BuFLO countermeasure can increase the accuracy

of the Time classifier from 9.9% to 27.3%! In retrospect this is not surprising. If we

throttle the bandwidth of the web page transfer, we will amplify its timing fingerprint.

These results reinforce the observations of prior sections. Namely, that TA coun-

termeasures must, in the context of website identification, prevent coarse features

from being leaked. As soon as these features leak, adversaries will gain some advan-

tage in picking out web pages.

4.8 Concluding Discussion

Although a significant amount of previous work has investigated the topic of TA

countermeasures, and specifically the case of preventing website identification attacks,
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the results were largely incomparable due to differing experimental methodology and

datasets. Our work synthesizes and expands upon previous ones, and it provides

sharper answers to some of the area’s central questions:

Do TA countermeasures prevent website fingerprinting? None of the nine

countermeasures considered here prevents the kind of website fingerprinting attack

addressed by prior works [73, 127, 60, 92]. From a security perspective this setting

is conservative, and makes several simplifying assumptions. (The attacker knows

the privacy set; it trains and tests on traffic generated in the same way; the collected

traffic does not account for (potentially) confounding effects, such as browser caching,

interleaved web requests, etc.) Nevertheless, our negative results suggest that one

should not rely solely upon these countermeasures to prevent website fingerprinting

attacks.

Do TA attacks require individual packet lengths? No. We implemented three

coarse-feature classifiers: one using only total time as a feature, one using only total

per-direction bandwidth, and one tracking only data bursts (the VNG classifier).

These did not make direct use of individual packet lengths or packet counts as features,

yet attained high accuracy against the countermeasures. This highlights the point

that masking fine-grained information is insufficient, unless such masking also hides

telling large-scale features (e.g., individual object requests, size of web objects, etc.).

Does classification engine matter? Our experiments suggest it is the features,

and not the underlying classification engine, that matters. We implemented a naïve

Bayes-based classifier that used the same features as those exploited by the SVM-

based Panchenko et al. classifier, and our experiments show that these two perform

almost identically.
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Does the privacy-set size (k) matter? For the considered setting, it seems not

to matter much. When no countermeasure is used, attacks can achieve roughly the

same accuracy for k = 2 through k = 775. When countermeasures are applied, the

best classifier’s accuracy does drop slowly as k increases. This suggests that the

countermeasures do obfuscate some features that can improve accuracy. That said,

at the largest k, the best classifiers offer better than 60% accuracy against all of the

countermeasures.

Our work paints a pretty negative picture of the usefulness of efficient, low-level

TA countermeasures against website-fingerprinting attacks. But pessimism need not

prevail. Future work could investigate more detailed modelings of real-world traffic,

and investigate applications of TA countermeasures beyond website fingerprinting.

This may uncover settings in which some countermeasures are more successful than

they were in our experiments. In addition, the coarse features (e.g. bandwidth) that

appear near impossible to obfuscate efficiently at the level of individual packets might

be better handled at the application layer. Previous works [60, 77] suggest application-

layer countermeasures with promising initial evaluations. Future work could provide

more extensive investigation of such countermeasures.

56



www.manaraa.com

5 Overview: Internet Censorship and Censorship Circumvention

Network operators increasingly deploy deep packet inspection (DPI) to improve vis-

ibility into network activities and control those activities based on application-layer

content. In practice, the most advanced DPI systems use a combination of sim-

ple pattern matching and regular expressions. Regular expressions encode finger-

prints for, in particular, the protocols of interest, and whether packet contents match

against these expressions informs what is called port-independent protocol identi-

fication [34, 94, 68, 9, 40]. Performance and scalability of the regex-based traffic

classification strategies has been extensively studied [58, 112, 13].

Alternative protocol identification strategies have been explored and include us-

ing packet sizes and timings (cf. Section 2), the types and number connections ini-

tiated by a host (its “social behavior”) [67, 70], and various machine learning tech-

niques [138, 89, 88]. However, the feasibility of deploying more sophisticated classifi-

cation strategies for DPI at scale remains unclear [89, 104, 39].

A controversial application of DPI is when nation-states use it to censor their

citizens’ use of the Internet. In Figure 10 we provide a summary of six countries and

the evidence to support that DPI is used for censorship. Intuitively, it should be

the case that encryption does a good job resisting the DPI adversaries in Figure 10.

URLs should be concealed, keywords can’t be identified, and, if industry standard

encryption is used, the adversary would have to make a difficult decision: either

blacklist or whitelist all encrypted traffic. However, it turns out that even encryption

can have characteristic fingerprints. As an example, Iran blocked Tor based on its

TLS certificates in 2011 [43]. In more extreme cases, countries are willing to throttle

or completely block whole classes of encrypted traffic [96]. Unfortunately, traditional

encryption is an insufficient solution.
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Censorship Country
Strategy China Iran Pakistan Syria Russia Turkey
DNS/URL [33, 113] [113, 5, 10] [87] [27] [113] [113]
keyword [93, 135, 71, 124] [10] - [27] - -
application [124] [10] - [27] - -

Table 10: A summary of blacklist strategies employed by six countries. Each citation references
an empirical study that confirms that the blacklist strategy was employed for an extended period of
time within the country. A “-" indicates there is no published evidence to support that the blacklist
strategy has been deployed in the specific country.

Used
Year Name Type Low latency? by... Ref.
2010 Collage tunneling no - [21]
2011 Dust randomization yes - [123]
2011 Telex tunneling depends - [134]
2011 Cirripede tunneling depends - [64]
2012 StegoTorus mimicry yes - [120]
2012 SkypeMorph mimicry no - [85]
2012 Censorspoofer tunneling no - [115]
2012 SWEET tunneling no - [139]
2013 FreeWave tunneling no - [63]
2013 ScambleSuit randomization yes Tor [125]
2010-2014 obfs2/obfs3/obfs4 randomization yes Tor [125]
2014 CloudTransport tunneling no - [18]
2014 Facet tunneling no - [72]

Table 11: A summary of proposed censorship-circumvention solutions. Strategy describes the
underlying strategy used for the system. Low latency indicates if the system can be used for tasks
such as web browsing. Used by... listed which systems the solution has actually been deployed in.

There have been a number of proposed solutions for censorship circumvention, we

list some of them in Figure 11. Censorship-circumvention solutions can be divided

into three types: randomization, mimicry and tunneling. We discuss each of these

types in detail, in the remainder of this section.

5.1 Randomization

For systems implementing the randomization approach, the primary goal is to remove

all static fingerprints in the content and statistical characteristics of the connection,
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effectively making the traffic look like “nothing.” The obfs2 and obfs3 [110] protocols

were the first to implement this approach by re-encrypting standard Tor traffic with

a stream cipher, thereby removing all indications of the underlying protocol from the

content. Recently, improvements on this approach were proposed in the ScrambleSuit

system [125] and obfs4 protocol [110], which implement similar content randomization,

but also randomize the distribution of packet sizes and inter-arrival times to bypass

both DPI and traffic analysis strategies implemented by the censor. The Dust system

[123] also offers both content and statistical randomization, but does so on a per-

packet, rather than per-connection, level. While these approaches provide fast and

efficient obfuscation of the traffic, they only work in environments that block specific

types of known-bad traffic (i.e., blacklists). In cases where a whitelist strategy is

used to allow known-good protocols, these randomization approaches fail to bypass

filtering, as was demonstrated during recent elections in Iran [38].

5.2 Mimicry

Another popular approach to circumvention is to mimic certain characteristics of pop-

ular protocols, such as HTTP or Skype, so that blocking traffic with those character-

istics would result in significant collateral damage. Mimicry-based systems typically

perform shallow mimicry of only a protocol’s messages or the statistical properties of

a single connection. As an example, StegoTorus [120] embeds data into the headers

and payloads of a fixed set of previously collected HTTP messages, using various

steganographic techniques. However, this provides no mechanism to control statis-

tical properties, beyond what replaying of the filled-in message templates achieves.

SkypeMorph [85], on the other hand, relies on the fact that Skype traffic is encrypted

and focuses primarily on replicating the statistical features of packet sizes and timing.

Ideally, these mimicked protocols would easily blend into the background traffic of the
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network, however research has shown that mimicked protocols can be distinguished

from real versions of the same protocol using protocol semantics, dependencies among

connections, and error conditions [63, 53]. In addition, they incur sometimes signifi-

cant amounts of overhead due to the constraints of the content or statistical mimicry,

which makes them much slower than randomization approaches.

We also note that mimicry system share many characteristics with systems that

perform network traffic generation. Most traffic generation systems focus on simple

replay of captured network sessions [108, 62], replay with limited levels of message

content synthesis [37, 102], generation of traffic mixes with specific statistical prop-

erties and static content [26, 119], or heavyweight emulation of user behavior with

applications in virtualized environments [132]. Many mimicry and tunneling systems

share similar strategies, however the key difference is that mimicry systems must

transport useful information to circumvent filtering.

5.3 Tunneling

Like mimicry-based systems, tunneling approaches rely on potential collateral dam-

age caused by blocking popular protocols to avoid filtering. However, these systems

tunnel their data in the payload of real instances of a target protocol. The Freewave

[63] system, for example, uses Skype’s voice channel to encode data, while Facet [72]

uses the Skype video channel, SWEET [139] uses the body of email messages, and

JumpBox [78] uses web browsers and live web servers. CensorSpoofer [115] also tun-

nels data over existing protocols, but uses a low-capacity email channel for upstream

messages and a high-capacity VoIP channel for downstream. CloudTransport [18]

uses a slightly different approach by tunneling data over critical (and consequently

unblockable) cloud storage services, like Amazon S3, rather than a particular proto-

col. The tunneling-based systems have the advantage of using real implementations
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of their target protocols that naturally replicate all protocol semantics and other

distinctive behaviors, and so they are much harder to distinguish. Even with this

advantage, there are still cases where the tunneled data causes tell-tale changes to

the protocols behavior [53] or to the overall traffic mix through skewed bandwidth

consumption. In general, tunneling approaches incur even more overhead than shal-

low mimicry systems since they are limited by the (low) capacity of the tunneling

protocols.
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6 Censorship Circumvention with Format-Transforming Encryption

Despite the growing use of DPI in many security-critical settings, we are unaware

of any work that specifically studies the robustness of state-of-the-art DPI protocol-

identification tools in the face of dedicated attacks. Thus, we address the following

question: are there practical attacks that will force any regular-expression-based DPI

into misclassifying connections as protocols of the attacker’s choosing? And, if such

attacks do exist, can these misclassified connections carry practically useful amounts

of information?

Our conclusion is that, indeed, misclassification attacks exist against enterprise-

grade DPI, and that these attacks can be mounted while carrying sufficient informa-

tion to surf the web, transfer files, and use Tor [44]. Rather than building an array of

ad-hoc schemes to trick specific DPI systems, we instead target the implicit premise

underlying modern DPI: that regular expressions (regexes) are sufficient for identify-

ing network protocols. To that end, we develop a generic approach for controlling the

format of encrypted data, so that it will match whatever regex we desire to specify.

With this ability, we can force protocol misidentification across a broad range of DPI

systems.

The development of a generic approach to evasion of regex-based DPI implies that,

for settings with adversarial network users, future protocol-identification systems will

have to move to more expensive techniques based on machine learning [138, 70, 89, 88],

active probing [81], or something else entirely. At the same time, the approach also

suggests a promising way forward mimicry-based censorship circumvention.

Format-Transforming Encryption The foundation of our approach is a new

cryptographic primitive called format-transforming encryption (FTE). It allows the

user to input a regex of their choosing and output ciphertexts that are guaranteed to
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match it. This gives FTE a built-in mechanism for forcing misidentification by regex-

based DPI. It will additionally achieve more traditional privacy and authenticity

goals.

We consider a variety of methods to specify the regular expressions that are input

to the FTE scheme. In those scenarios where we know which DPI systems are being

used, the simplest method is lifting them directly from systems themselves, or man-

ually creating them using knowledge of RFCs and the DPI code. When we do not

have information about the DPI system, we provide a simple procedure for learning

regexes from network traces of the application-protocols that we wish our traffic to

match.

Under the hood, our FTE scheme relies heavily on well-known algorithms for rank-

ing strings in a given regular language [54]. The algorithms were previously suggested

for use in the related context of format-preserving encryption [14], however, as far as

we are aware, our work gives the first implementation and performance analysis of the

algorithms. To realize a working FTE proxy system capable of tunneling arbitrary

network traffic, we specify and implement a full, FTE-powered record layer. By this

we mean that we build, around the FTE core, logic to manage buffering and frag-

mentation of incoming plaintext streams on the sender’s side, and ciphertext stream

buffering, parsing and fragment reassembly on the receiver’s side.

We use this FTE proxy system to explore the resistance of six state-of-the-art

DPI systems to protocol misclassification attacks. We show that even expensive,

proprietary systems can be forced to mistakenly identify FTE-protected traffic as

any of a number of target protocols chosen by the user, including HTTP, SMB,

and SSH. We stress that our approach works no matter what the underlying FTE-

encapsulated application-layer protocol actually is. To the best of our knowledge,

this is the first comprehensive analysis exposing how ineffectual modern DPI systems
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can be rendered.

One immediate implication is that our proxy system provides a ready-made mech-

anism for circumventing actual, deployed DPI tools. When used to surf the web, FTE

imposes as little as 16% bandwidth overhead and no latency overhead compared to

conventional encryption of traffic. By comparison, FTE is both more flexible and ef-

ficient than existing circumvention tools that also attempt to prevent proper protocol

identification [134, 85, 64] As a practical matter, our FTE system works as a drop-in

pluggable transport [7] for Tor, and has been integrated into the official Tor Browser

Bundle. Since it’s deployment in early 2014, more than 30,000 users have connected

to the Tor Network using FTE. Furthermore, the FTE library source code has been

released under the Apache License, and its source is freely available10.
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6.1 Modern DPI Systems

In our evaluation, we focus on port-independent protocol identification as used by

six modern DPI systems. These systems span a wide range of complexity, cost,

and expected deployment environments. Here, we discuss details of the systems we

evaluate, and present a summary in Figure 12. Unless otherwise mentioned, our

discussion and later evaluations will use default configurations.
10https://fteproxy.org/
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DPI Multi-stage Classifier Complexity
System Type Pipeline HTTP SSH SMB

DFA States
appid regex-only 7 15 8 104
l7-filter regex-only 7 55 8 6
YAF regex-only 3 29 10 5

Lines of C/C++ Code
bro hybrid 3 1593 30 1188
nProbe hybrid 3 807 89 24
DPI-X ? ? ? ? ?

Table 12: Summary of evaluated DPI systems. Type indicates the kind of DPI engine used.
Multi-stage pipelines chain together several passes over packet contents. Classifier complexity is
the number of DFA states used for regular expressions or total lines non-whitespace/non-comment
C/C++ code.

appid The appid [9] library uses port-based pre-filtering to determine a set of protocol-

identifying regexes, against which each TCP stream should be evaluated. It applies

each regular expression in the set against the stream, and returns the first match

as the protocol label. A match is attempted for bi-directional (i.e., client-server and

server-client) streams. In our evaluation we used the latest available version of appid

(as of April 2013), and instantiated it via its included Python module.

L7-filter The l7-filter [34] software also performs regex-only matching. However,

it differs from appid in that it does not pre-filter based on port numbers. Moreover,

l7-filter specifies only regexes to identify uni-directional server-to-client streams. In our

evaluation we used version 2009-05-28 of the l7-filter userspace classification engine,

and invoked it with its included test suite.

Yet Another Flowmeter YAF [68] is a network monitor that performs applica-

tion labeling. The YAF protocol-classification engine is predominantly regex-only,

although in a few cases (e.g., the classification of TLS) it employs C-based logic. We

classify YAF as regex-only because the majority of protocols are classified using a

regex-only strategy. Additionally, for some protocols, YAF performs its regex analysis
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in two stages; HTTP is one example. A first-pass match for HTTP (caused, say, by

matching the string HTTP/) triggers a second-pass to extract message contents, such

as the User-Agent field of the HTTP request. In our evaluation we used the latest

stable version of YAF (2.3.3, January 2013) compiled with application identification

support.

Bro Network Security Monitor bro’s [94] Dynamic Protocol Detection (DPD)

is implemented as a set of regexes and associated C/C++ based parsers, where a

parser is triggered in the event that its partnering regular expression(s) match the

input stream. The parser is used to extract additional information from the stream,

when possible, and to determine when the regular expression match was actually a

false positive. In its default configuration, bro parses individual messages and extracts

per-message attributes, such as the URI of an HTTP request, or the version number

of the SSH protocol being used. In our evaluation, we used the latest, stable version

(2.1, Aug. 2012) of bro, and extracted the assigned stream label from the service

field of the conn.log file.

For classification of SMB streams, which is not supported in version 2.1, we used

an alpha-release SMB parser available in the bro git repository. We bootstrapped

this parser into an SMB-classifier by labeling a flow as SMB only if the parser did

not encounter parse errors, which is consistent with the strategy of other classifiers

present in bro.

nProbe Pro nProbe [40] is an open-source network monitoring utility that costs

e299.95 for commercial use. nProbe includes the ability to identify the encapsulated

data within a protocol. As an example, it can identify a web request to YouTube

or FaceBook. This means that nProbe can re-assemble TCP streams, identify the

contents of a flow, and then parse individual message within a flow. nProbe uses
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hard-coded C-based logic, for the sake of efficiency, to identify attributes that could

be captured by a regular expression. As an example, for HTTP it searches for a

finite list of values (i.e. GET, POST, HTTP, etc.), in order to identify an HTTP

stream. When such a match occurs, a C-based second-pass parser is triggered. In

our evaluation we used version 6.9.5 of nProbe Pro, and the NetFlow output value

%L7_PROTO_NAME to determine nProbe’s stream label.

DPI-X We obtained access to an enterprise-grade security gateway device sold by

a well-known network equipment manufacturer. The DPI capabilities of this device,

as advertised, enable classifying over 900 applications and protocols, including nested

and tunneled applications (e.g., Facebook over HTTP). We disclosed our results to

the equipment manufacturer, but did not receive approval to release details about

the device. Hence, we refer to this system as DPI-X. This device belongs to a class of

commercial systems, ranging from lower-end systems capable of handling a maximum

throughput of 90 Mbps ($600), up to carrier-grade products capable of 100 Gbps (over

$25,000). The system used in our testing has a maximum throughput of 1.5 Gbps and

a cost of $8,000. We believe DPI-X is representative of the DPI products employed

in many enterprise and carrier networks. In fact, the maker of this product has been

identified as one of the suppliers of censorship equipment for Iran [98].

Threat model A primary goal in this work is to experimentally ascertain the extent

to which these representative DPI systems are vulnerable to protocol-misidentification

attacks. (We will use misidentification and misclassification interchangeably.) To

define this term, consider a setting in which a DPI system monitors all connections

traversing a network. Two parties want to communicate via an application-layer

protocol that uses connection(s) traversing the DPI-protected network. We will refer

to these two parties as the “attacker” to emphasize that the DPI faces adversarially
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generated traffic. In a white-box DPI attack, the attacker knows the DPI classification

algorithms that are used, while in a black-box DPI setting the attacker does not. The

latter may be because the particular DPI being used is not known (even if the set of

possible DPIs is known), or simply because the algorithms are proprietary.

We call the application-layer protocol used for communicating data the source

protocol. In a misidentification attack, the attacker’s goal is to have its connections,

which use the source protocol, be (mis)identified by the DPI as a target protocol of

the attacker’s choosing. An example would be to have SSH as the source protocol,

and HTTP as the target protocol. In a successful attack, the DPI will incorrectly

label the actual (encrypted) SSH connections as (unencrypted) HTTP connections.

To declare a practical success, we also require that the attack does not significantly

degrade performance of the source protocol.

Despite the clear importance of protocol misidentification attacks, we are unaware

of any prior work that evaluate the DPI systems in our test set (or other similar sys-

tems). See Section 5 for discussion of related settings and other potential approaches

for forcing protocol misidentification that are different from ours.

6.2 Format-Transforming Encryption

All of the open-source DPI systems in our evaluation set use membership in a regular

language — either explicitly with regexes or implicitly by logic coded in languages such

as C/C++ — to inform application-layer protocol classification. We therefore target

mechanisms which enable an attacker to force protocol misidentification against any

DPI that relies on regex checks. Note that this goal is more aggressive than merely

defeating the systems in our corpus (but we will do that as well!), and we expect our

approach will work against any currently deployed regex-based DPI system.

Our main idea is to build DPI resistance into encryption schemes. The key tech-
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nological enabler, which we explain in the remainder of this section, is augmenting

the normal encryption interface to take a regex as an input. The purpose of this

regex is to specify the format of ciphertexts: this means that ciphertexts, when taken

as a string over the appropriate alphabet, are guaranteed to match against the spec-

ified regex. We call the resulting primitive format-transforming encryption (FTE).

In turn, we show how to use FTE as a component within a record layer that han-

dles streams of messages from an arbitrary source protocol. Through proper choice

of regex, ciphertexts produced by this record layer –which are actually carrying the

source protocol– will be classified as messages from another protocol (of our choosing)

by the DPI.

Our FTE record layer will be used for two purposes. First, we will build an

FTE (single-hop) proxy system by combining the FTE record layer with SOCKS in

a straightforward way. We will then use it to support our hypothesis that the regex-

based DPI used in practice is fundamentally vulnerable to misclassifcation attacks.

We do this by showing how to use the FTE proxy to force protocol misidentification

by the entire set of DPI systems and with respect to a variety of target protocols. We

also show that doing so has essentially negligible overhead for most relevant regular

languages. We believe these results suggest that DPI systems must move to more

advanced mechanisms (discussed in Section 5) in settings with adversarial users.

Our second purpose, empowered by the ease with which it forces protocol misiden-

tification and the high performance it obtains, will be to incorporate the FTE record

layer into Tor for use in circumventing censorship. We discuss this more in Section 6.5.

6.2.1 FTE via Encrypt-then-Unrank

An FTE scheme is a triple of algorithms: key generation, encryption and decryption.

Key generation works as in conventional encryption, outputting a randomly chosen
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Figure 15: Sender-side (left) and receiver-side (right) record-layer flow. We discuss the
various modules in the text.

symmetric keyK. Encryption Enc takes inputs of a keyK, a format F , and a message

M . It can be randomized, stateful, or deterministic, and always outputs a ciphertext

C or a distinguished error symbol ⊥. Decryption Dec takes inputs of a key K, a

format F , and a ciphertext C. It outputs a message or ⊥. The format F specifies

a set L(F) called the language of F . The requirement is that any C output by Enc

must be a member of L(F).

FTE is a related to format-preserving encryption (FPE), first formalized by Bel-

lare, Ristenpart, Rogaway, and Stegers (BRRS) [14]. FPE is used in the context of

in-place encryption of credit-card numbers (or other records) within databases. It

likewise uses formats, but requires that both plaintext messages and ciphertexts be

members of the same format-specified language.

We desire FTE schemes that support formats described by regexes. This will allow

easy “programming” of formats and endows FTE with the same expressive power as

regex-based DPI. To do so, we start by following an approach similar to one used

by BRRS. Loosely speaking, to implement Enc(K,F ,M) for a regular expression F

we: (1) encrypt M using a standard authenticated encryption scheme to obtain an

intermediate ciphertext Y ; (2) treat Y as an integer in Z|L(F)| (the set of integers

from 0 to the size of the language minus one); and (3) apply an encoding function
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unrank: Z|L(F)| → L(F). To be able to decrypt, we require that unrank is in fact a

bijection with efficiently computable inverse rank: L(F)→ Z|L(F)|.

The key algorithmic challenge is implementing rank and unrank efficiently. These

associate to each string in the language its rank, i.e., its position in a total ordering

of the language. The notion of ranking was first explored by Goldberg and Sipser [54]

in the context of language compression. Goldberg and Sipser also gave an efficient

way to rank a regular language when that language is represented by a deterministic

finite automaton (DFA). BRRS used this for an (unimplemented) FPE scheme for

arbitrary regular languages encoded as DFAs, but they also emphasize that, asymp-

totically speaking, there is provably no way to give efficient rank and unrank functions

starting just from a regex. Standard tools exist for converting from a regex to an

nondeterministic finite automaton (NFA) and from there to a DFA (see Section 6.4),

but the second step potentially incurs an exponential blow-up in state size. We ob-

serve that this worst-case behavior is not an issue for FTE, in part because the kinds

of regexes used by DPIs are themselves designed explicitly to avoid the worst-case

blowup.

Our implementation uses the time-space tradeoff of Goldberg and Sipser to sup-

port more efficient runtime performance by precomputing tables that allow (un)ranking

of all strings x ∈ L with |x| ≤ n. (These algorithms appear in Appendix C.) The

complexity of this precomputation is O(n·|Σ|·|Q|), where Σ is the underlying alphabet

and Q is the state set for the DFA implementing the FTE regular expression. Given

these tables, the complexity of rankL and unrankL are Ω(n) and O(n·|Σ|), where n is

the length of the output of rankL or input of unrankL, respectively. We can also for-

malize all of the above and prove that the Encrypt-then-Unrank approach preserves

the message confidentiality and authenticity security of the underlying authenticated

encryption scheme.
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6.2.2 FTE Record Layer

In order to transform arbitrary TCP streams, we need additional “record layer” ma-

chinery to buffer, encode, unambiguously parse, and decode streams of FTE messages.

In Figure 15 we give an overview of the processes by which plaintexts are transformed

into FTE ciphertexts, and vice versa. We assume that sender and receiver share a pre-

established set of keys, possibly derived from a single shared master key. Our record

layer also assumes an underlying, reliable network transport protocol, e.g. TCP.

Implementing FTE formats We will find it useful to specify in our formats more

than just a regular expression. Thus a format F for the record layer is as a tuple

(R, k,m): a regular expression R, a number k > 0 that specifies the length of strings

to use from the language L(R), and an integer m ≥ 0 that controls the number of

unformatted ciphertext bits to append to the end of the FTE-encoded message. The

reason to use a specific length k is that it is an expedient way of rendering easy-to-

parse FTE ciphertexts, while the value m is used to cheaply enable more capacity

in cases where the desired language is, in fact, any string with a prefix in L(R). All

told, for F = (R, k,m) the language becomes L(F) = (L(R) ∩ Σk)‖Σ≤m where Σ is

the alphabet underlying R. For simplicity we assume Σ = {0, 1} in what follows, but

in implementations one will typically use larger alphabets. In our implementation we

use values m = 218 and k = 210, unless otherwise specified.

FTE Sender See the left diagram in Figure 15 and consider a format F = (R, k,M).

Let Lk(R) = L(R)∩{0, 1}k be the k-bit slice of L(R) we will use and t = blog2(|Lk(R)|)c

be that slice’s capacity (the number of bits one can encode using the slice). The first

action on the sender’s side is to prepare an encrypted record using a secret key K.

From a plaintext message buffer, grab a plaintext message M of length at most
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|M | < m. Then form a plaintext record, containing an encoding of |M | followed by

M . The record is then encrypted using a standard, stateful authenticated-encryption

(AE) scheme with K to produce a ciphertext C. We assume that |C| is defined solely

by |M |, which is true for AE schemes used in practice. We also pad M , if required,

to ensure that |C| ≥ t. Our implementation uses CTR mode over AES and then

authenticates the resulting ciphertext with HMAC-SHA256.

The encrypted record C is passed to the split module, and appended to an internal

buffer maintained by split. The job of split is to produce two strings: one to be passed

to unrank for formatting, and one that will be passed along as-is. In particular, split

takes up to t + m bits (and at least t bits) from the front of the buffer, which we

refer to as C ′. Note that C ′ may be a full AE ciphertext, part of one, or include bits

from multiple ciphertexts. Then split partitions C ′ into C ′1 and C ′2 with |C ′1| = t and

|C ′2| ≤ m. The first portion C ′1 is forwarded to unrank, which produces a formatted

string X ∈ Lk(R). Finally, the concatenation X‖C ′2 becomes the sender’s FTE

ciphertext which can then be transmitted.

FTE Receiver Referring to the right-hand diagram in Figure 15, the receiver buffer

logic is responsible for managing the stream of incoming FTE ciphertexts. One issue

here, is that there are no explicit markers to demarcate FTE-encoded ciphertext

boundaries. We therefore must take care to ensure that the receiver can correctly

decrypt given that its buffer may contain multiple contiguous ciphertexts. To do so,

the receiver takes advantage of the fact that the sender used a fixed11 slice Lk(R). As

soon as it has the first k FTE ciphertext bits in its buffer, it treats these as a string

X ∈ Lk(R) and applies rank(X) to recover C ′1. (Should X /∈ Lk(R) decryption should

abort.) It then feeds C ′1 to the AE decryption algorithm in order to retrieve ` = |M |
11One could instead rely on L(R) being prefix-free, but we found using fixed slices simpler and

sufficient.
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and possibly some initial bits of a message M . (Those latter message bits should not

yet be released to higher layers.) Note that this means that the AE scheme must

be able to perform incremental decryption and that it should not be vulnerable to

attacks (c.f., [4]) that abuse use of the length field before ensuring integrity. CTR

mode plus HMAC provides these properties.

Given ` the receiver now knows how many more bits of AE ciphertext are expected.

From here it can remove the next up to m bits of ciphertext from the input buffer,

and then go back into a state where it treats the subsequent k bits in the buffer as

a string in Lk(R), applying rank as above, and so on. When it retrieves a full AE

ciphertext, it finishes decryption, verifies integrity of the ciphertext, and only now

releases the buffered message bits up to the application.

Regex negotiation One unique feature of FTE is the ability to quickly change

regexes on the fly. We would like to be able to provide in-band negotiation of formats,

but since all data sent on the wire must be formatted to pass DPI checks, it is not

possible to negotiate regexes in the clear. We address this limitation by allowing the

client/server to agree upon regexes for the duration of a TCP connection assuming

they support some initial large set of possible regexes.

In more detail, we assume the client and server have a shared, ordered list of

FTE formats (F1, . . . ,Fn), and still assume the client and server have negotiated

cryptographic keys out-of-band. For each TCP connection, the client determines the

FTE format Fi it wishes to use for client-to-server messages, and the Fj it wishes to

use for server-to-client message. Then, the client constructs the messageM ← 〈i〉‖〈j〉,

encrypts M as a distinguished negotiate message-type, designated by the value of a

first (reserved) byte of the plaintext, encodes it with Fi, then sends it to the server.

When the server receives an initial message from the client it iterates through
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its list of formats, attempting to decode the message with each of the FTE for-

mats. Once it encounters a successful decryption, it evaluates the message and then

uses for the session Fi for client-server messages and Fj for server-client messages.

The server finalizes the negotiation by responding to the client with a distinguished

negotiate_acknowledge message.

We can improve on the naïve receiver-side implementation of this procedure by

having an implementation of rank that contains special checks that short-circuit eval-

uation to terminate early in cases when the string being ranked is not accepted by

the DFA. This enables the server to quickly exclude certain formats, thereby making

it possible to support dozens of formats.

6.3 Protocol Misclassification

In this section, we experiment with three strategies for providing regexes used with our

FTE record layer: regexes extracted from open-source DPI systems (6.3.1); regexes

programmed manually (6.3.2); and regexes automatically learned from samples of

target protocol traffic (6.3.3). We will always use a pair of formats: one for upstream

(client-to-server) and one for downstream (server-to-client) communications. We will

then use our FTE record layer to assess the vulnerability of the DPI systems in our

evaluation to protocol-misidentification attacks.

Recall that a source protocol is the application-layer protocol whose connections

the attacker wants to have misclassified. We explored HTTP [50], HTTPS [42], secure

copy (SCP) [137], and Tor [44] as source protocols, and found that the choice of source

protocol does not influence our results. We therefore focus our discussion primarily

on HTTP(S).

For each regex generation strategy we explore three target protocols: HTTP [50],

SSH [137], and SMB [82]. The latter is a proprietary protocol designed by Microsoft
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to support sharing of resources, such as files and printers, over networks. We also

explored other target protocols, including SIP [99] and RTSP [100], but limit our

discussion here to the prior three as the results for the others were the same. Indeed,

we suspect FTE can be successfully used for almost any target protocol.

Experimental testbed We implemented our FTE record layer as a library that

can be used to relay arbitrary data streams. More implementation details appear

in Section 6.4. In our evaluation we use it in the following configuration. The FTE

client listens for incoming TCP connections on a local client-side port. Upon receipt

of an incoming connection the FTE record layer encrypts the messages using the

upstream format and relays them to a remote FTE server. The FTE server receives

these FTE ciphertexts, decrypts them, and then relays the recovered plaintexts to a

pre-configured destination TCP port. Downstream, the process is reversed, with the

FTE server encrypting returned messages using the downstream format.

We use Mozilla Firefox version 17.0.3, controlled by version 2.28.0 of the Selenium

browser automation framework to request the Alexa Top 50 (US) websites over the

FTE record layer; this is repeated five times for each upstream-downstream format

pair tested. The testing framework generates a mixture of HTTP, HTTPS and DNS

source traffic and a total of roughly 12,000 TCP connections. On the server-side

we relayed all HTTP(S) messages via a SOCKS proxy. We used the default Firefox

configuration, with the following exceptions: we tunneled all DNS requests through

the SOCKS connection, specified our start page as blank, and disabled caching to

disk.

76



www.manaraa.com

6.3.1 DPI-Extracted Regular Expressions

As our first method of programming the FTE record layer, we build FTE formats

by extracting them directly from the source code of open-source regex-based DPI

systems. This models a white-box DPI attack setting for the DPI systems from

which we extract regexes, and a black-box DPI attack for others (e.g., DPI-X).

Extracting regular expressions Using regexes from DPI systems within our FTE

record layer is straightforward. Given a regular expression R from the DPI, we specify

a format F = (R′, k,m) where R′ is exactly R except without a “ .∗” (match any)

prefix, should there be one. This makes L(R′) ⊆ L(R), while ensuring that FTE

ciphertexts will include the formatting information found in R after the prefix. We

set k = 128 and m = 215 for good performance (the misclassification results do not

change with other reasonable settings).

We use the naming convention of 〈DPI system〉-〈target protocol〉 to reference a

pair of upstream-downstream regexes extracted from the given DPI system. (Some

systems only have a regex for a single direction, in which case we use “ .∗” for the

other direction.) YAF contains at least two regexes for each target protocol, and we

indicate that using a 1 or 2 in the format name. The result is 12 different formats.

Misclassification evaluation The misclassification rates for all 12 formats against

the 6 classifiers appears in Table 13. Here (and throughout this section) the rate is

calculated as the number of TCP connections labeled as the target protocol by the

classifier, divided by the total number of TCP connections generated when using

that FTE format. Thus a rate of 1.0 means complete misclassification success, and

0.0 is complete failure. Throughout our evaluations, a connection that failed to be

misclassified as the target protocol by a DPI system was always marked as an unknown
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Format Misclassification Rate
appid l7-filter YAF bro nProbe DPI-X

appid-http 1.0 0.0 1.0 0.0 0.0 1.0
l7-http 0.0 1.0 0.16 0.0 0.0 1.0
yaf-http1 0.0 0.0 1.0 0.0 0.0 1.0
yaf-http2 0.0 0.0 1.0 0.57 0.0 1.0
appid-ssh 1.0 0.32 1.0 1.0 0.0 1.0
l7-ssh 0.16 1.0 0.16 0.13 0.0 1.0
yaf-ssh1 1.0 0.31 1.0 1.0 0.0 1.0
yaf-ssh2 1.0 0.21 1.0 1.0 0.0 1.0
appid-smb 1.0 1.0 1.0 0.08 0.0 1.0
l7-smb 0.0 1.0 0.38 0.0 0.0 1.0
yaf-smb1 0.0 0.04 1.0 0.0 0.0 1.0
yaf-smb2 0.0 0.04 1.0 0.0 0.0 1.0

Table 13: Misclassification rates for the twelve DPI-Extracted FTE formats against the six classi-
fiers in our evaluation testbed.

protocol, regardless of the DPI system.

What Table 13 reveals is that DPI-extracted regexes always succeed against the

DPI system from which they were extracted, and can even force misclassification by

different DPI systems. As an example of the latter, we need only look at DPI-X,

which is by far the easiest system to force misclassification against despite having no

information about its operation. We confirmed the proper operation of the device by

running a variety of control traffic, such as Facebook, Gmail, and SSH, through the

device, and found that our results were indeed correct. While we still do not know the

exact DPI strategy used, our best guess is that DPI-X performs minimalistic analyses,

favoring performance and optimistic labeling of protocols. These regexes were not

effective against nProbe, and had varied success against bro. This can be attributed

to the latter DPI systems requiring slightly more stringent protocol conformance.

Intersection formats We also consider formats whose regex R is the explicit in-

tersection of multiple DPI regexes. FTE based on such an intersection format will

produce ciphertexts matching all of the individual regexes used to form R. Using
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the intersection of the four DPI-extracted formats for each target protocol resulted

in formats with perfect 1.0 misclassification rates for appid, l7-filter, YAF, and DPI-X.

The rates against bro and nProbe are comparable to those for the individual regexes.

6.3.2 Manually-Generated Regular Expressions

As our next strategy for producing regexes, we will code them manually. Our FTE

record layer makes this easy since most developers are already familiar with regexes

due to their use in other programming contexts. Moreover, it turns out to be very

simple to build fast, simple regexes that achieve perfect misclassification for all clas-

sifier/target protocol combinations in our evaluation set.

Coding regexes for FTE We started by inspecting the open-source DPI systems,

in particular for cases from the last section where the extracted regexes failed, in order

to educate regex design. For HTTP regular expressions, we observed the following

requirements. l7-filter requires that responses have an HTTP version of 0.9, 1.0, or

1.1; an HTTP status code in the range of 100-599; and Connection, Content-Type,

Content-Length, or Date fields. appid requires that responses have a string of length

greater than zero following the status code, and that the status line is terminated with

\r\n. YAF requires that we have a valid HTTP method verb for requests (i.e. GET,

POST, etc.). nProbe requires that we terminate HTTP messages with \r\n\r\n. Fi-

nally, bro require that we have no payload for HTTP requests, or a payload and a valid

Content-Length field — we accommodate this requirement by not allowing a payload

for requests and specifying an FTE format parameter of m = 0. (Section 6.2.1)

For SSH all classifiers require that the first downstream, and in some cases up-

stream, messages start with SSH-. Next, l7-filter demands that the first two messages

in a stream start with SSH-1.x or SSH-1.y. nProbe requires the first messages in an
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SSH stream to be less than or equal to 99 bytes long, and we achieve this by setting

our FTE format parameter to k = 99 for both directions of traffic, which constricts

message lengths.

All classifiers in our evaluation require that SMB messages have a valid SMB

fingerprint, which is the byte \xFF, followed by SMB encoded in ASCII. In addition,

nProbe requires that message have a valid length that matches the length of the

message payload, that the length field is located as the first 32-bit word in the message,

and that SMB is encoded as ASCII in the second 32-bit word. Here we encounter

a check that is not easily encoded as a regular language (or avoided as above for

nProbe’s checking of HTTP Content-Length fields), at least if one wants to support

all 232 possible lengths. However, we can simply use a specific value for the length

field and provide an equivalently sized payload. For the regexes in our experiments,

we set the FTE format parameter m to zero, meaning that we do not append any

raw AE ciphertext bytes.

Misclassification evaluation We specified regexes that met the above require-

ments for each of the target protocols. It took less than 30 minutes for one of the

authors to specify each regex and debug it by testing it against known DPI engines.

The resulting regexes achieved perfect misclassification for all classifier/target proto-

col combinations, as shown in Table 14. Every TCP connection was tagged as the

target protocol of our choosing.

6.3.3 Automatically-Generated Regular Expressions

When we know the DPI systems and their classification methods, the DPI-extracted

and manually-generated regexes provide guaranteed evasion and optimal capacity.

Unfortunately, there are many cases where it is not possible to know this informa-

80



www.manaraa.com

tion, like when the DPI classification strategy abruptly changes or when proprietary

systems are used. In these situations, we can use a simple but effective process to

automatically generate regexes from network traffic samples using widely-available

protocol parsers. This allows us to implicitly learn FTE formats from data that is

assumed (or known) to pass DPI scrutiny without raising alerts. Although other,

more complex, methods of format discovery are available [19, 20, 126, 107], we focus

on well-known network message formats to avoid unnecessary complexity while still

providing robust regex generation capabilities. The regex generation process proceeds

as follows.

1. Collect packet trace data for target protocol message.

2. Apply a parser to label message fields.

3. Create a set containing observed values for each field, called a dictionary.

4. Create a template for each message type by replacing the values with placeholders

for the associated dictionaries.

5. Convert each dictionary into a regex by concatenating the values with an “or"

operator between them.

6. For each template, replace the placeholders with the associated dictionary regexes.

7. Choose one or more of the resultant template regexes as the language(s) used by

the FTE system.

There are a number of ways this method can be tuned to adjust the quality and

capacity of the resultant language(s). First, we can control the properties of the

messages that are collected in the packet trace data, such as their message types or

payload lengths. Data containing a single, consistent message type will produce more

coherent regexes at the cost of smaller dictionaries, while a mix of message types will

produce much larger dictionaries with more capacity but with potentially inconsistent,

low-quality regexes. We can also control the regexes through the granularity of the
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Format Misclassification Rate
appid l7-filter YAF bro nProbe DPI-X

manual-http 1.0 1.0 1.0 1.0 1.0 1.0
manual-ssh 1.0 1.0 1.0 1.0 1.0 1.0
manual-smb 1.0 1.0 1.0 1.0 1.0 1.0
auto-http 1.0 1.0 1.0 1.0 1.0 1.0
auto-ssh 1.0 1.0 1.0 1.0 0.0 1.0
auto-smb 1.0 1.0 1.0 1.0 1.0 1.0

Table 14: Misclassification rates for the manually-generated and automatically-generated FTE
formats against all six classifiers.

parsers used to break the data into fields. Fine-grained parsing produces a greater

number of dictionaries within each template and, consequently, an increase in the

number of possible combinations among their values. Conversely, coarse parsers will

create templates that are more likely to produce valid outputs, but with less overall

capacity.

Regex generation The packet trace data used to evaluate the security of the gen-

erated regexes was produced by agents that randomly logged into and crawled HTTP,

SMB, and SSH servers. For HTTP, we used the wget utility to download the front

page of a random selection of web sites on the Alexa Top 1000. SMB and SSH data

was generated by scripts that logged into local Linux and Windows servers, randomly

crawled the directory structure, accessed files, and logged out several times over the

course of a one-hour period. We partitioned the captured data into groups based

on their message types and payload lengths. From these partitions, we extracted

client headers for HTTP POST requests, SMB transaction requests, and SSH hand-

shake banner messages. The server messages that we use include HTTP 200 OK

responses, SMB transaction responses, and SSH handshake banner messages. Each

of these message types was parsed using their respective Wireshark dissectors, and

the highest-capacity template regular expression was chosen for the FTE format. Any

82



www.manaraa.com

remaining payload bytes not included in the parsed message header were automat-

ically replaced with a regular expression that produced the appropriate number of

random bytes.

Misclassification evaluation Table 14 presents the results of our evaluation, and

illustrates that the generated regexes achieved perfect misclassification rates except

for the nProbe SSH classifier, which had a misclassification rate of zero. The nProbe SSH

classifier requires that the first message in each direction be an appropriately format-

ted banner message with an arbitrary length limitation of 100 bytes. Since our regex

generation method is limited to only using what it observes (in this case a single client

banner and less than five server banners), the generated regex would have only two

bits of capacity. To enhance the capacity, we artificially generated RFC-compliant

banner messages with the optional comment field used to carry random bytes up to

the specified maximum length of 255 bytes, which provided sufficient capacity and

the ability to evade all classifiers but nProbe. This highlights a natural limitation of

the simple generation process, though avenues for improvement are possible through

more advanced generalization procedures or the use of multiple FTE formats within a

single connection (e.g., zero-capacity banner messages followed by high-capacity key

exchange messages).

6.4 Performance

Our FTE prototype was developed in C/C++ and Python. Performance-critical

algorithms such as rank, unrank, and BuildTable are implemented in C/C++. We

use a customized version of the re2 library for regular expression to DFA conversion,

and OpenFST for DFA minimization. Cryptographic algorithms are implemented

using PyCrypto. Multiple precision arithmetic is performed using GMP. Logic for
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FTE format DFA states avg. unrank (ms) avg. rank (ms)
intersection-http-downstream 70 0.52 0.48
intersection-smb-downstream 104 0.55 0.54
intersection-ssh-downstream 11 0.55 0.52
manual-http-downstream 38 0.43 0.43
manual-smb-downstream 130 0.53 0.5
manual-ssh-downstream 9 0.42 0.42
auto-http-downstream 13,815 1.6 1.5
auto-smb-downstream 222 0.82 0.79
auto-ssh-downstream 237 0.52 0.49

Table 15: Average rank and unrank performance for our downstream FTE formats.

the record layer and networking is multi-threaded and implemented in Python.

For performance benchmarks our client machine was an AMD Opteron 8220 SE

@ 2.80GHz running CentOS 6.4 and server was an Intel Core i5-2400 @ 3.4GHz

running Ubuntu 12.04. Each machine was connected to the Internet at an academic

institution.

Rank/Unrank Recall that for FTE we must perform unranking starting from

regexes, which can require exponential time in the worst case (see Section 6.2.1).

In practice, however, the regexes we require for misidentification attacks admit fast

(un)ranking. In Table 15, we present the DFA size and average time to perform rank-

ing and unranking for our intersection, manual, and automated formats over 100k tri-

als using random integers as input. We present performance results for downstream

formats only. In all cases the upstream formats perform better than their down-

stream counterpart in (un)ranking benchmarks and have smaller DFA state-spaces.

The FTE format parameters used in these benchmarks are described in Section 7.5.

The DPI-extracted intersection formats and manual formats resulted in very com-

pact DFAs, with no more than 130 states. We note that the automatically generated

regexes resulted in the largest DFAs, but were still very fast even for >10, 000 state

DFAs. This all evidences that the worst-case blow-up in state sizes when converting
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Figure 16: Distribution of webpage (Alexa top fifty) download times (top row) and data transferred
(bottom row) for our intersection, manually-generated and automatically-generated FTE formats,
compared to using our socks-over-ssh configuration.

from an NFA to DFA does not greatly impede performance.

Web-browsing performance We setup our FTE record layer to proxy HTTP(S)

traffic as described in Section 6.3. As a baseline for comparison, we use a conventional

encrypted tunnel. Using OpenSSH’s integrated functionality we established a SOCKS

proxy which listened client-side, such that all connections were routed through the

SSH connection to the remote server, and then ultimately on to the destination IP

address. We call this our socks-over-ssh configuration.

We download the Alexa Top 50 websites five times each using the socks-over-ssh

setup. We do the same with the FTE proxy for each of the intersection, manual, and

automatically generated regexes. Each of the four separate runs (inclusive of socks-

over-ssh) therefore resulted in 250 data points. In our socks-over-ssh configuration,

websites in the Alexa Top 50 took an average of 5.5 seconds to render the webpage and

all dependencies, and required an average of 1,164KB of data transfer including all

TCP/IP overhead. In Figure 16, we show the cumulative distribution of the latency

and bandwidth data points for the four different runs.
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The lowest average download time of the FTE formats was the intersection-ssh

format, which incurred no increase (5.5s avg.) in latency compared to socks-over-

ssh, and 1,348KB (16%) increase in data transfer overhead. The highest average

download time of all the formats was the automatic-http format, with an average

page-render time of 7.1s (29%) and an average of 3,279KB (181%) transferred per

website. The increase in data transferred is due to (1) ciphertext expansion and (2)

Firefox generating persistent TCP connections that cause FTE/SOCKS negotiation,

but do not result in data transfer. These latter empty connections do not use much

bandwidth in the socks-over-ssh case.

In our testing we note that engineering issues often overshadow the overheads of

FTE. For example, the socks-over-ssh system performed better on sites with low band-

width requirements and a small number of TCP connections, while our FTE prototype

actually performs better than socks-over-ssh for websites that use a large number of

TCP connections. This is because our FTE implementation uses multi-threading

more aggressively than OpenSSH, and this is better aligned with the Firefox’s use of

multiple TCP connections in parallel.

Goodput As a goodput baseline, we performed a direct copy of a 100MB file with

SCP from our server to our client and achieved 58Mbps on average over 100 trials.

Average round-trip latency between the client and server was 70ms. When using SCP

with the FTE record layer, our best performing format was intersection-ssh and it

achieved 42Mbps. All other FTE formats with m > 0 exhibited similar performance.

For our worst performing format, automated-http, we achieved 1.9Mbps and other

formats with m = 0 had similar goodput. The slower performance for the latter

formats stems from their not allowing raw AE ciphertext bytes to follow unrank

output.
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In our goodput tests, the FTE implementation was never CPU bound. Hence, the

performance of our (un)ranking algorithms was not the bottleneck. Profiling of our

FTE prototype indicates that future performance gains could be had by optimizing

the buffer management and networking logic.

Memory utilization To determine the memory utilization of our FTE prototype,

we first measured the memory requirements of the BuildTable algorithm, which is the

largest consumer of memory in our prototype. For all formats, except auto-http, the

BuildTable algorithm required at most 2MB of memory. The auto-http upstream

format requires 15MB and the auto-http downstream format requires 184MB. As

expected, memory utilization increases linearly with respect to DFA state space.

6.5 Censorship Circumvention

In the previous sections, we focused on using FTE to evaluate the efficacy of modern

enterprise-grade DPI. We showed that not only can our FTE record layer easily

force DPI misclassification, but it can do so while incurring negligible performance

impact. This suggests that FTE can be a useful tool for settings where one wants to

circumvent DPI-enabled censorship. Here, we experimentally investigate integrating

our FTE record layer into the Tor anonymity network as a as a pluggable transport [7].

Integration A pluggable transport is a record-layer mechanism that processes Tor

messages before being transmitted on the wire. The only currently deployed transport

is obfsproxy [125], which applies a stream cipher to every bit output by Tor using a

shared key. Originally, this shared key was a hard-coded, but a newer version (not yet

deployed) replaces this with an in-band, anonymous Diffie-Hellman key exchange. The

result of this latter approach is a cryptographic guarantee that all the bitstrings seen

by a (passive) DPI are indistinguishable from random strings, so that the obfuscated
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Tor messages will not have fixed fingerprints. This does not, however, force protocol

misclassification, and therefore would fail to bypass DPI that use a whitelist of allowed

protocols.

We can do better using our FTE record layer as the pluggable transport. Integrat-

ing it into Tor with a hard-coded key is immediate, and it is straightforward to add

key exchange to our record layer. Specifically, one could just initiate sessions using

the existing obfs3 [125] Diffie-Hellman key exchange, but running the key-exchange

messages through our unranking mechanisms before being sent on the wire, since the

messages in this exchange are indistinguishable from uniformly random bit strings,

they behave like the AE ciphertext bits in our record layer. Together with our existing

library of regex formats, we arrive at a version of Tor that can easily force misclas-

sification for the DPI systems currently used in practice. Indeed we verified that

misclassification rates for all the six systems in our corpus are as seen in Section 6.3,

but now using Tor with FTE as the pluggable transport. We believe that FTE is an

attractive pluggable transport option for several reasons:

• Flexibility : The FTE record layer already supports a variety of target proto-

cols, and adding new ones requires only specifying new regexes. Extending prior

steganographic systems to support many targets (see Section 5), on the other

hand, would be very labor intensive.

• Sufficiency : The FTE record layer forces misclassification by all evaluated DPIs,

even DPI-X whose proprietary classification strategy is unknown to us and is sim-

ilar to systems used in censorship settings [98].

• Speed : The FTE record layer has essentially negligible overhead and, when used

with Tor, its overhead is lost in the noise of the Tor network’s performance vari-

ability.
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FTE through the GFC We set up an FTE client on a Virtual Private Server

(VPS) located within China and an FTE server in the United States. The server was

configured to accept incoming connections on port 80. To set a censorship baseline,

we first attempted to browse several websites that are known to be censored, including

YouTube and Facebook, without using FTE to tunnel the traffic, and found that these

sites were blocked. We then attempted to browse the same websites through the FTE

tunnel, using our intersection, manual, and automatic HTTP formats. In every case,

the FTE tunneled traffic successfully traversed the GFC, and we were able to browse

the censored websites.

Next, we considered using FTE to tunnel Tor traffic. Again, to set a baseline, we

attempted to connect to a private Tor bridge listening on port 443 of our server, using

the default Tor distribution. We observed behavior consistent with the recent analysis

of the Great Firewall of China (GFC) by Winter et al. [124]: initial Tor connections

to our private bridge were successful, and they were followed by an active probe from

a Chinese IP address after roughly 15 minutes. The probe performed a handshake

with the bridge, then blacklisted the (IP,port)-combination used by the bridge. We

validated the blacklisting by observing that subsequent attempts to connect to our

Tor bridge (IP,port)-combinations resulted in a successful SYN packet from the VPS

to our bridge, followed by spoofed TCP RSTs transmitted to the client and bridge to

terminate the TCP connection.

Having established that Tor was indeed being censored, we then attempted the

same tasks through our FTE tunnel, again using each of our intersection, manual,

and automatic HTTP formats. Despite port 443 being blacklisted from our previous

Tor tests, using FTE on port 80 was successful, and we were able to circumvent the

GFC with this FTE-tunneled Tor circuit. After these initial tests we established a

persistent FTE tunnel between our FTE client and server. Every five minutes we
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selected a censored URL and downloaded it through our FTE-powered tunnel. This

tunnel remained active for one month, and successfully subverted the GFC until the

termination of our VPS account.

On detecting FTE Censors have been aggressive at rolling out new DPI-based

mechanisms for detecting and blocking circumvention tools. How will FTE fare in

this kind of arms race? The first idea would be for DPI systems to obtain the FTE

regex formats and then use them to mark any traffic exactly matching the regex as

FTE. For most of the regexes we consider, this would lead to prohibitively high false

positive rates (e.g., 100% of HTTP traffic). The one exception is the automatically

generated regexes, which may not match against other traffic, because of (for example)

time stamps or unique hash values that were learned from collected traffic traces.

A second approach might be for DPI to perform more non-regular checks, such

as verifying correctness of length fields for protocols that include them, e.g., the

Content-Length field of HTTP responses. Note that actually this example would

not work for DPI in practice, as one-third of the response messages generated when

downloading the Alexa Top 50 did not include a valid Content-Length field despite

it being strongly recommended in the HTTP RFC. Elsewhere this kind of check

can be addressed by, for example, developing formats that encode a large number of

lengths that are frequently observed in legitimate traffic, and for each length ensuring

appropriate length of ciphertexts. In theory, one could also use FTE for more powerful

language classes (i.e., an algorithm for ranking unambiguous CFGs appears in [54]).

More generally, DPI is faced with finding checks for protocol semantics or for-

matting with fidelity beyond what is captured by the FTE record layer. Since the

latter takes a minimalist approach, there are innumerable ways in which FTE com-

munications differ from real target protocol runs. The recent work of Houmansadr
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et al. [63], for example, shows how to exploit discrepancies in other circumvention

systems that do much more than FTE in terms of attempting to mimic a target pro-

tocol [120, 85, 115]. However, finding such discrepancies is easy, and the hard open

question (not addressed in [63]) is how to make such checks effective—fast, scalable,

and with negligible errors—in the messy deployment environments faced by DPI and

for all of the essentially arbitrary target protocols FTE supports.

The GFC, as discussed above, also engages in active probing. For example, at-

tempting to connect to destination systems suspected of undesirable behavior. De-

termining how to resist such active attacks in practice is an ongoing research topic

(c.f., [103]). Use of FTE, however, can hope to force active probing for all legiti-

mate connections using the target protocol, vastly increasing the complexity of such

censorship techniques.

6.6 Concluding Thoughts

Since the publication of this work there has been a number of follow on works that

consider new FTE constructions. In 2014, Luchaup et al. [75] proposed a novel

algorithm to perform ranking of regular languages, directly from the NFA represen-

tation of a language. Initial tests show a marked reduction in memory usage for some

languages, compared to the DFA-based ranking presented in this section.

In another work [76], Luchaup et al. proposes a novel ranking scheme for context-

free languages, this can be used as a drop-in replacement for the ranking algorithms

presented in this section. This work opens the door for a whole new class of lan-

guages that can be used to bypass DPI systems that employ context-free grammars

for protocol analysis.
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7 Marionette: A Unified Framework for Censorship Circumvention

To combat application-layer filtering, several systems have been proposed to obfuscate

packet payloads, and generally hide the true protocol being transported. As we

discussed in Section 5, these methods fall into one of three categories: those that

use encryption to fully randomize the messages sent (e.g., obfs4 [110], ScrambleSuit

[125], Dust [123]), those that use encryption in combination with some lightweight

ciphertext formatting (e.g. FTE [48], StegoTorus [120]), and those that piggyback off

of existing software artifacts (e.g. FreeWave [65], Facet [72], SkypeMorph [85]). A few

of these systems have been deployed and are currently used by more comprehensive

circumvention systems, such as Lantern [1], uProxy [2], and Tor [44].

Motivated by their initial, positive impact, we set out to address challenges that

these obfuscation schemes do not (and cannot). For example, none of the obfuscation

methods just mentioned can provide protocol-compliant HTTP traffic to traverse a

simple HTTP-proxy like Squid [121]. Methods like FTE and StegoTorus fail because

they make no effort to enforce protocol compliance across the (ciphertext) HTTP-

messages that they create; nor can they tolerate message-content changes that HTTP-

proxies routinely make. Randomizing methods, such as obfs4, will be rejected by an

HTTP-proxy for obvious reasons.

This example surfaces two important observations. The first is relatively specific:

forward-looking systems must support stateful behaviors. Minimally, messages ex-

changed by the two ends of the obfuscated tunnel should respect protocol semantics,

at least to the level required by the expected monitoring apparatus. The second ob-

servation is related, but more general. To date, obfuscation schemes each seem to

adopt a particular, fairly narrow design target, and this makes them brittle in prac-

tice. Consider randomizing schemes, whose design target is, effectively, to destroy all
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structure in the messages they create. These are not useful in settings where the mon-

itor employs whitelisting, where only specific application-layer protocols are allowed.

Iran’s recent elections [38] showcased such a setting. Going in the exact opposite

direction, systems like FreeWave and Facet target delivery of ciphertexts that, as a

collection, respect one specific protocol. But when that protocol is blacklisted, as

Skype was in Ethiopia [86], the scheme becomes useless. Currently, the only system

that allows any type of dynamic updating of its behavior is FTE [48]. But it, too,

relies on an (arguably) narrow design goal of mimicking protocols at the level of a

single message.

The main contribution of this section is that we give a system-building framework

that supports a rich design space: a broad range of fidelity in respecting any partic-

ular protocol, choice of which protocol to target, the ability to change and schedule

target protocols during a communication session, and mechanisms to admit shaping

of traffic-related distributions.

Models. The conceptual core of our framework are a powerful kind of probabilis-

tic automata, loosely inspired by probabilistic input/output automata [133]. These

provide an intuitive method for modeling, and controlling, features of the messages

our system will produce. For example, we use them to model the (potentially) prob-

abilistic sequencing of message types, and whole protocols. Each transition between

states in a model may have an associated block of actions. If the model is captur-

ing, say, the scheduling of protocol messages on a channel (see Figure 17), examples

actions might be to encrypt/obfuscate the next block of user data, and postprocess

it to have appropriate, protocol-specific fields. If the model is capturing a simple

web-object retrieval the states might be which protocol to mimic, and the actions

then spawn models for those protocols. (Which, in turn, produce messages according
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Case Study MC SB MLC ID TS Protocol(s) (Down/Up)
Regex-Based DPI 3 - - - - HTTP, SSH 52.0 / 52.0 Mbps

SMB
Proxy Traversal 3 3 - - - HTTP 5.5 / 0.5 Mbps

Protocol Compliance 3 3 3 3 - FTP, POP3 2.0 / 2.0 Mbps
Traffic Analysis 3 3 3 3 3 HTTP 0.8 / 0.4 Mbps

Table 16: Summary of Marionette case studies illustrating breadth of protocols, depth of feature
control, and high throughput. MC = Message Content, SB = Stateful Behavior, MLC = Multi-Layer
Control, ID = Interconnection Dependencies, TS = Traffic Statistics

to that model.) Hierarchical models support intuitive traffic-feature control stacks,

and support system design.

The Marionette System. We provide a system architecture (see Table 18) that

puts puts models to use, in relaying arbitrary datastreams between a client and server,

the latter typically providing a proxying service. To support turning abstract models

into system-usable data structures, we develop a simple domain-specific language

(DSL). We will give multiple examples of models and their DSL representation in

later sections. Specific model actions are instantiated by plugins, which are functions

that the developer supplies; in some cases, these will be calls to existing libraries (e.g.

FTE [48]). To support transmission of arbitrary datastreams, we develop a record

layer that allows for a variety of practical circumstances (e.g. proxies that multiplex

incoming TCP streams) and provides the system with mechanisms to support state-

sharing between models across connections.

We evaluate a prototype of Marionette through a series of case studies, which we

summarize in Table 16. The Marionette system can navigates a range of conditions,

including: bypassing regex-based DPI, generating RFC-compliant FTP traffic, by-

passing a protocol-enforcing HTTP proxy, and controlling for traffic features such as

message lengths. This far exceeds the capabilities of any previous obfuscation system.

Performance results show that our prototype can achieve peak throughput of 52Mbps
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for formats that bypass DPI, and maintain a throughput of 0.8Mbps even with the

most complex specifications in our evaluation.

Template Grammars. In our particular realization of the Marionette system, we

make use of another novel abstraction that enables fine-grained control of individual

ciphertext formats. A template grammar is a probabilistic context-free grammar

that compactly describes a language of ciphertext templates. These templates are

strings that contains placeholder tokens, marking the positions where ciphertext bits

may be embedded. Each placeholder has an associated handler, whose job is to do

the embedding. For example, handlers may implement direct embedding of a given

data string, perform encodings (e.g. the “unrank” functionality of FTE), or retrieve

appropriate dates, content lengths, etc.

Acknowledgements The work in this section was performed in collaboration with

Coull and Shrimpton, and was published at USENIX Security 2015 [49]. The en-

gineering, analysis and writing was lead by Dyer, with the help of Shrimpton and

Coull.

7.1 Models and actions

We aim for a system that admits broad controls over traffic properties, not just those

of individual application-layer protocol messages. As one example, it should support

sending a (ciphertext) message that is correct, with respect to what has been set

so far, for the expected semantics of the mimicked protocol. For another, it should

respect the observed distributions of message timings and sizes. A natural approach

to modeling this sort of control is a probabilistic state machine. We follow this path,

introducing a kind of state machine that is well-suited to our needs, and flexible

enough to support a wide range of design approaches.
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Marionette models. A marionette model (or just model, for short) is a tuple

M = (Q,Qnrm, Qerr, C,∆). The state set Q = Qnrm ∪ Qerr, where Qnrm is the set

of normal states, Qerr is the set of error states, and Qnrm ∩ Qerr = ∅. We assume

that Qnrm contains a distinguished start state, and that at least one of Qnrm, Qerr

contains a distinguished finish state. The set C is the set of actions, which are

(potentially) randomized algorithms. A string B = f1f2 · · · fn ∈ C∗ is called an

action-block, and it defines a sequence of actions. Finally, ∆ is a transition relation

∆ ⊆ Q×C∗× (dist(Qnrm)∪∅)×P(Qerr) where dist(X) the set of distributions over a

set X, and P(X) is the powerset of X. The roles of Qnrm and Qerr will be made clear

shortly.

A tuple (s,B, (µnrm, S)) ∈ ∆ is interpreted as follows. When M is in state s, the

action-block B may be executed and, upon completion, one samples a state s′nrm ∈

Qnrm (according to µnrm), and the {s′nrm} ∪ S is the set of valid next states. In this

way, our models have both proper probabilistic and nondeterministic choice, a la

probabilistic automata [133]. When (s,B, (µnrm, ∅)) ∈ ∆, then only transitions to

states in Qnrm are possible, and similarly for (s,B, (∅, S)).

In practice, normal states will be states of the model that are reached under

normal, correct operation of the system. Error states are reached with the system

detects an operational error, which may or may not be caused by an active adversary.

For us, it will typically be the case that the results of the action-block B determine

whether or not the system is operating normally or is in error, thus which of the

possible next states is correct.

Discussion. Marionette models support a broad variety of uses. One is to capture

the intended state of a channel between two communicating parties, i.e. what message

the channel should be holding at a given point in time. Such a model serves at least
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Figure 17: A (partial) graphical representation of a marionette model for an HTTP exchange.
The text discusses paths marked with bold arrows; normal states on these are blue, error states are
orange.

two related purposes. First, it serves to drive the implementation of procedures for

either side of the channel. Second, it describes what a passive adversary would see

(given implementations that realize the model), and gives the communicating parties

some defense against active adversaries. The model tells a receiving party exactly

what types of messages may be received next; receiving any other type of message

(i.e. observing an invalid next channel state) provides a signal to commence error

handling, or defensive measures.

Consider the partial model in Figure 17 for an exchange of ciphertexts that mimic

various types of HTTP messages. The states of this model represent effective states

of the shared channel, i.e. what message type is to appear next on the channel. Let

us refer to the first-sender as the client, and the first-receiver as the server. In the

97



www.manaraa.com

beginning, both client and server are in the start state. The client moves to state

http_get_js with probability 0.25, state http_get_png with probability 0.7, and state

NONE with probability 0.05. In transitioning to any of these states, the empty action-

block is executed (denoted by ε), meaning there are no actions on the transition. Note

that, at this point, the server knows only the set {http_get_js, http_get_png,NONE}

of valid states and the probabilities with which they are selected.

Say that the client moves to state http_get_png, thus the message that should be

placed on the channel is to be of the http_get_png type. The action-block Bget_png

gives the set of actions to be carried out in order to affect this; we have annotated

the actions with “c:” and “s:” to make it clear which meant to be executed by the

client, and which are meant to be executed by the server. The client is to encrypt a

message M using the parameters associated to the handle http_get_png, and then

apply any necessary post-processing in order to produce the (ciphertext) message Y

for sending. The server, is meant to parse the received Y (e.g. to undo whatever was

done by the post-processing), and then to decrypt the result.

If parsing and decrypting succeed at the server, then it knows that the state

selected by the client was http_get_png and, hence, that it should enter http_404

with probability 0.1, or http_ok_png with probability 0.9. If parsing fails at the

server (i.e. the server action parse(Y,http_get_png) in action block Bget_png fails) then

the server must enter state ERROR (parse fail). If parsing succeeds but decryption fails

(i.e., the server action decrypt(X,http_get_png) in action block Bget_png fails) then the

server must enter state ERROR (decrypt fail). At this point, it is the client who must

keep alive a front of potential next states, namely the four just mentioned (error states

are shaded orange in the figure). Whichever state the server chooses, the associated

action-block is executed –intuitively, that block will have the server acting first to

create a ciphertext, and the client second– and progress through the model continues
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until it reaches the specified finish state.

Models provide a useful design abstraction, specifying (for example) allowable

sequencings of ciphertext messages, as well as the particular actions that the com-

municating parties should realize in moving from message to message, e.g. encrypt or

decrypt according to a particular ciphertext format. In practice, we do not expect

sender and receiver instantiations of a given model will be identical. Indeed, proba-

bilistic/nondeterministic choices made by the sender will need to be “determinized”

by the receiver, and the way that the two sides respond to errors may differ. In

Section 7.8 we will consider concrete specifications of models.

7.2 Templates and Template Grammars

In an effort to allow fined-grained control over the format of individual ciphertexts

on the wire, we introduce the ideas of ciphertext-format templates, and grammars for

creating them. Templates are, essentially, partially specified ciphertext strings. The

unspecified portions are marked by special placeholders, and each placeholder will

be ultimately be replaced by an appropriate string, e.g. an ascii string representing

a date, a hexadecimal value representing a color, a URL of a certain depth. To

compactly represent a large set of these templates, we will use a probabilistic context-

free grammar. Typically, a grammar will create templates sharing a common motif,

for example HTTP request messages, or CSS files.

Template Grammars. A template grammar G = (V,Σ, R, S, p) is a probabilisitic

CFG, and we refer to strings T ∈ L(G) as templates. The set V is the set of non-

terminals, and S ∈ V is the starting non-terminal. The set Σ = Σ ∪ P consists of

two disjoint sets of symbols: Σ are the base terminals, and P is a set of placeholder

terminals (or just placeholders). Collectively, we refer to Σ as template terminals.
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The set of rules R consists of pairs (v, β) ∈ V × (V ∪ Σ)∗, and we will sometimes

adopt the standard notation v → β for these. Finally, the mapping p:R → (0, 1]

associates to each rule a probability. We require that the sum of values p(v, ·) for

a fixed v ∈ V and any second component is equal to one. For simplicity, we have

assumed all probabilities are non-zero.

The mapping p supports a method for sampling templates from L(G). Namely,

beginning with S, carry out a leftmost derivation and sample among the possible

productions for a given rule according to the specified distribution.

Template grammars produce templates, but it is not templates that we place

on the wire. Instead, a template T serves to define a set of strings in Σ∗, all of

which share the same template-enforced structure. To produce these strings, each

placeholder γ ∈ P has associated to it a handler. Formally, a handler is a algorithm

that takes as inputs a template T ∈ Σ∗ and (optionally) a bit string c ∈ {0, 1}∗ and

outputs a string in Σ∗, or the distinguished symbol ⊥, which denotes error. A handler

for γ scans T and, upon reading γ, computes a string in s ∈ Σ∗ and replaces γ with s.

The handler halts upon reaching the end of T , and returns the new string T ′ that

is T but will all occurrences of γ replaced. If a placeholder γ is to be replaced with

a string from a particular set (say a dictionary of fixed strings, or an element of a

regular language described by some regular expression), we assume the restrictions

are built into the handler.

As an example, consider the following (overly simple) production rules that could

be a subset of a context-free grammar for HTTP requests/responses.

〈header〉 → 〈date_prop〉: 〈date_val〉\r\n

| 〈cookie_prop〉: 〈cookie_val〉\r\n

〈date_prop〉 → Date
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Figure 18: A high-level diagram of the Marionette client-server architecture and its major com-
ponents for the client-server stream of communications in the Marionette system.

〈cookie_prop〉 → Cookie

〈date_val〉 → γdate

〈cookie_val〉 → γcookie

To handle our placeholders γdate and γcookie, we might replace the former with the re-

sult of FTE[”(Jan|Feb|...”)], and the latter with the result of running FTE[”([a-zA-Z...)”].

In this example our FTE-based handlers are responsible for replacing the placeholder

with a ciphertext that is in the language of its input regular expression. To recover the

data we parse the string (according to the the template grammar rules), processing

terminals in the resultant parse tree that correspond to placeholders.

7.3 Proxy Architecture

In Section 7.1 we described how a Marionette model can be used to capture stateful

and probabilistic communications between two parties. The notion of abstract actions

(and action-blocks) gives us a way to use models generatively, too. In this section,

we give a high-level description of an architecture that supports this use, so that we

may transport arbitrary datastreams via ciphertexts that adhere to our models. We

will discuss certain aspects of our design in detail in subsequent sections.

Figure 18 provides a diagram of this client-server proxy architecture. In addition
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to models, this architecture consists of the following components:

• The client-side driver runs the main event loop, instantiates models (form their

model-specifications), and destructs them when they have reached the end of

their execution. The complimentary receiver-side broker is responsible for lis-

tening to incoming connections and constructing and destructing models.

• Plugins are the mechanism that allow uesr-specified actions to be invoked in

action-blocks. We discuss plugins in greater detail in Section 7.6.

• The client-side multiplexer is an interface that allows plugins to serialize incom-

ing datastreams into bitstrings of precise lengths, to be encoded into messages

via plugins. The receiver-side demultiplexer parses and deserializes streams

of cells to recover the underlying datastream. We discuss the implementation

details of our (de)multiplexer in Section 7.5.

• A channel is a logical construct that connects Marionette models to real-world

(e.g. TCP) data connections, and represents the communications between a

specific pair of Marionette models. We note that, over the course of a channel’s

lifetime, it may be associated with multiple real-world data connections.

Let’s discuss how data traverses the components of a Marionette system. A datas-

tream’s first point of contact with the system is the incoming multiplexer, where it

enters a FIFO buffer. Then a driver invokes a model that, in turn, invokes a plugin

that wants to encode n bits of data into a message. (Note that if the FIFO buffer is

empty, the multiplexer returns a string that contains no payload data and is padded

to n bits.) The resultant message produced by the plugin is then relayed to the server.

Server-side, the broker attempts to dispatch the received message to a model. There

are three possible outcomes when the broker dispatches the message: (1) an active
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model is able to process it, (2) a new model needs to be spawned, or (3) an error has

occurred and the message can’t be processed. In case 1 or 2, the cell is forwarded

to the demultiplexer, and onward to its ultimate destination. In case 3, the server

enters an error state for that message and responds accordingly.

We note that the Marionette system will, in fact, operate with some of its com-

ponents disabled. As an example, by disabling the multiplexer/demultiplexer we

effectively have a traffic generation system that doesn’t carry actual data payloads,

but generates traffic that abides by our model(s). This shows that there’s a clear

decoupling of two system features: control over traffic features and relaying of data.

7.4 Implementation

Our implementation of Marionette consists of two component modules, called client

and server, which share a common codebase. Each component can be invoked as a

command line application or directly instantiated as a thread. Our initial prototype

of Marionette is written in roughly three thousand lines of Python code. The Mar-

ionette source code and engineering details will be available as free and open-source

software12. In this section we’ll overview some of the major engineering obstacles we

overcame to realize Marionette.

In our implementation, the client is always invoked with one associated model,

while the server can be invoked with an arbitrary number of associated models. The

server must provide a mapping between its models and its connections (e.g., binding

this particular model to that particular TCP port). In practice, support for multiple

models may be useful for a number of reasons. As one example, a server may want to

invoke two models to a single port, where one model is dedicated to serving Marionette

clients and a second model is dedicated to error handling. The latter may be used in
12https://github.com/kpdyer
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cases where we wish to resist active probing attacks.

7.5 Record Layer

First, we’ll briefly describe the Marionette record layer and its objectives and de-

sign. The following record layer is our concrete implementation choices for the multi-

plexer/demultiplexer described in Section 7.3. Note that the following design choices

target settings where a user employs marionette for the purpose of web browsing and

may encounter active adversaries, such as protocol enforcing proxies, intercepting

communications. Hence, we target features that may not be required in all settings.

Our record layer aims to achieve three goals: it (1) enables multiplexing and

reliability of multiple datastreams, (2) aids Marionette in negotiating and initializing

models, and (3) provides privacy and authenticity of payload data. Let’s walk through

each of these goals in turn.

Multiplexing of datastreams. Our goal is to enable datastreams that we tunnel

through the Marionette system to not rely upon any single connection for the reliabil-

ity and in-order delivery of data. What’s more, oftentimes Marionette is responsible

for tunneling multiple independent datastreams. For this reason, the Marionette

record layer provides the ability to reliably multiplex multiple datastreams.

We achieve this by including a datastream ID and datastream sequence number

in each cell, as depicted in Figure 19. Sender side, these values are populated at the

time of the cell creation. Receiver side, these values used to reassemble streams and

delegate them to the appropriate data sink. The datastream flags field may have the

value of OPEN, RELAY or CLOSE, to indicate the state of the datastream.

Negotiation and initialization of Marionette models. Upon accepting an in-

coming message, a Marionette receiver iterates through all transitions to all start
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states for all models mapped to the listening channel. If one of the action blocks for

a transition is successful, the underlying record layer (Figure 19) is recovered and then

processed. The marionette flags field, in Figure 19, may have three values: START,

RUNNING, or END. A START value is set when if this is the first cell transmitted

by this model, otherwise the value is set to RELAY until the final transmission of the

model where a CLOSE is sent. The marionette model UUID field is a global identifier

that uniquely identifies the model that transmitted the message. The marionette

instance ID is used to unique identify the instance of the model that relayed the

cell.

For practical purposes, in our proof of concept, we assume that a marionette

instance ID is created by either the client or server, but not both. By convention we

define the “first sender" (i.e., the party that action block that has message-carrying

capacity) as the party that initiates the instance ID. Once established, the marionette

instance ID has two potential uses. In settings where we have a proxy between

the Marionette client and server the instance ID can be used to determine the model

that originated a message. In other settings, the instance ID can be used to enhance

performance and seed a random number generator for shared randomness between

the client and server.

Encryption of the cell. We encrypt each record-layer cell M using a slightly

modified encrypt-then-mac authenticated encryption scheme, namely

C = AESK1(IV1‖〈|M |〉)‖CTR[AES]IV2

K1
(M)‖T.
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Figure 19: The format of the plaintetxt marionette record layer cell.

The first component of the encrypted record is a header. Here we use AES with

key K1 to encrypt an encoding of the length of M , along with an initial value IV1.13

The second component is the record body, which is the counter-mode encryption

of M under IV2, using EK1. (This is why we put IV1 in the encrypted record header,

to force domain separation between the uses of E.) Finally, we append to this an

authentication tag T by running HMAC-SHA256K2 over the record header and the

record body.

7.6 Plugins

The full power of the Marionette system is enabled by it’s ability to execute arbi-

trary user-specified plugins. A plugin is called by the marionette system with four

parameters: the current channel, global variables shared across all active models, lo-

cal variables scoped to our specific model, and the input parameters for this specific

plugin. (e.g., the FTE regex or the template grammar name) By use of global and

local dictionaries this allows plugins to be stateful and even enable message passing
13One could use the cell-length field from the cell in place of 〈|M |〉. We do not, to make easier

the reuse of libraries from the reference implementation of FTE [48].
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plugin name description
spawn(S) spawns models S, blocks until completion
puts(S) transmits S

fte.send(R) transmits a record-layer cell
FTE-encoded with regex R

tg.send(S) sends a cell with template grammar S

Table 17: A selection of plugins from our Marionette implementation. Some plugins, such as
spawn, fte.send and fte.recv have can also have asynchronous implementations that immediately
return success and do not block until completion.

between models. We place very few restrictions on plugins. However, we require that

if a plugin fails, it must indicate so and revert any changes it made in attempting to

perform the action. In Table 17, we list some of the plugins that we implemented for

our proof of concept.

To enable multi-level models, we provide a spawn plugin that can be used to spawn

new instances of models. In addition, we provide puts and gets for the purpose of

transmitting static strings. As one example, this can be used to transmit a static,

non-information carrying banner to emulate, say, an FTP server. As our primary

message-level plugins that enable data encoding, we implemented FTE and template

grammars (Section 7.2.) Each plugin has a synchronous (blocking until completion)

and asynchronous (nonblocking, returns immediately) implementation. The FTE

plugin is a wrapper around the FTE14 and regex2dfa15 libraries used by the Tor

Project for FTE [48]. For the initial version of our template grammar plugin we

implemented parsers, template generators manually.

7.7 The Marionette DSL

In order to expose the full potential of the Marionette framework we present a domain-

specific language that can be used to compactly describe models. We refer to the
14https://github.com/kpdyer/libfte
15https://github.com/kpdyer/regex2dfa
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formats that are created using this language as marionette model-specifications or

model-specifications for short. In Figure 20 we have the Marionette language specifi-

cation.

We have two primary, logical blocks in the model-specification. The connection

block is responsible for establishing model states and their transition probabilities.

The action_block is responsible for defining a set of actions, which is a line for each

party (client or server) and the plugin the party should execute.

Example: A model-specification for HTTP. Recall the model in Figure 17,

which (partially) captures an HTTP connection where the first client-server message

is an HTTP GET for a JS or PNG file. Translating the diagram into our Marionette

language is a straightforward process. First, we establish our connection block and

specify tcp and port 80 — this tells the server on which port to listen and client which

port to connect. For each transition we create an entry in our connection block. As

an example, we added a transition between the http_get_png and http_404 state with

probability 0.1. For this transition we execute the get_png action block. We repeat

this process for all transitions in the model ensuring that we have the appropriate

action block for each transition.

For each action block we use synchronous FTE. One party is sending, one is

receiving, and neither party can advance to the next state until the action successfully

completes. The user is not responsible for creating or destroying the underlying TCP

connection. This is transparently handled by Marionette.

7.8 Case Studies

We evaluate the Marionette implementation described in Section 7.4 by building model-

specifications for a breadth of scenarios: protocol misidentification against regex-
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connection([connection_type]):
start [block_name] [dst] [prob]
[src] [block_name] [dst] [prob]
...
[src] [block_name] end [prob]

action_block [block_name]:
[client | server] plugin(arg1, arg2, ...)
...

connection(tcp, 80):
start NULL http_get_js 0.25
start NULL http_get_png 0.75
http_get_png get_png http_404 0.1
http_get_png get_png http_ok_png 0.9
http_ok_png ok_png ...

action_block get_png:
client fte.send("GET /\w+ HTTP/1\.1...")

action_block ok_png:
server fte.send("HTTP/1\.1 200 OK...")

...

Figure 20: Top: The Marionette DSL. The connection block is responsible for establishing the
Marionette model, its states and transitions probabilities. Optionally, the connection_type pa-
rameter specifies that type of channel that will be used for the model. Bottom: The partial model-
specification that implements the model from Figure 17.

based DPI, protocol compliance for complex stateful protocols, traversal of proxy

systems that actively manipulate Marionette messages, and controlling statistical

features of traffic, such as message lengths.

For each case study we analyze the performance of Marionette for the given model-

specification using our testbed. In our testbed, we deployed our Marionette client and

server on Amazon Web Services m3.2xlarge instances, in the us-west (Oregon) and

us-east (N. Virginia), respectively. These instances include 8 virtual CPUs based

on the Xeon E5-2670 v2 (Ivy Bridge) processor at 2.5GHz and 30GB of memory.

As our performance metric we report the goodput, which is the rate in Mbps at

which Marionette can relay datastreams. All performance numbers are the average
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performance over 30 trials for the transmission of a 10MB file, by repeatedly invoking

the chosen Marionette model until the file transfer is complete.

7.8.1 Regex-Based DPI

As our first case study, we confirm that Marionette is able to generate traffic that

is misclassified by regex-based DPI as a target protocol of our choosing. Effectively,

reproducing results from Section 6, by using the regular expressions referred to as

manual-http, manual-ssh and manual-smb. Using these regular expressions, we en-

gineering a Marionette model that invokes the non-blocking implementation of our

FTE plugins.

For each configuration we generated 100 datastreams in our testbed and classified

this traffic using bro [94] (version 2.3.2) and YAF [68] (version 2.7.1.) We consid-

ered it “success" if the classifier reported the manual-http datastreams as HTTP, the

manual-ssh datastreams as SSH, and so on. In all six cases (two classifiers, three pro-

tocols) we achieved 100% success. All three formats exhibited similar performance

characteristics, which is consistent with the results from [48]. On average, we achieved

52Mbps goodput for both the upstream and downstream directions.

7.8.2 Protocol-Compliance

As our next test, we aim to achieve protocol compliance for scenarios that require

a greater degree of inter-message and inter-connection state. In our testing we

created model-specifications for HTTP, POP3, and FTP that generate protocol-

compliant network traffic. The FTP format was the most challenging of the three, so

we’ll use it as our case study.

Let’s start by analyzing what the control channel for a PASV FTP session looks

like and the network traffic it generates. We denote client messages with C: and
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server messages with S:.

S: 220 Welcome to My FTP Server!

C: USER username

S: 331 Password required for username

C: PASS password

S: 230 Logged in as username.

C: PASV

S: 227 Entering Passive Mode (a,b,c,d,x,y)

C: get myfile.mp3

S: 150 Data connection starting...

S: 226 Transfer Complete.

C: quit

S: 221 Goodbye.

An FTP session in passive mode uses two data connections: a control channel and

a data channel. In order to enter passive mode a client issues the PASV command, and

the server responds with a server address of (a,b,c,d,x,y). As defined by the FTP

protocol [97], the client then connects to TCP port a.b.c.d:(256*x+y) to retrieve

the file requested in the GET command. Hence, there is a one to many relationship

between this conceptual FTP session and the network connections it generates.

Building our FTP model-specification. In building our FTP model we en-

counter three unique challenges, compared to other protocols such as HTTP:

1. FTP has a sequence of back-and-forth messages between the client and server.

In order to maximize potential encoding capacity, we must utilize multiple en-

coding strategies (e.g., FTE, template grammars, etc.)

2. The FTP protocol is stateful (i.e., message order matters) and has a range of

message types (e.g., USER, PASV, etc,) some of which do not have the ability to
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encode information.

3. Performing either an active or passive FTP file transfer requires establishing a

new connection and maintaining appropriate inter-connection state.

To address the first challenge, we utilize Marionette’s plugin architecture, including

FTE, template grammars, model spawning (to spawn the fte_pasv_get model), and

the ability to send/receive static strings. To resolve the second, we rely on Mar-

ionette’s ability to model stateful transitions and block until, say, a specific static

string (e.g., the FTP server banner) has been sent/received. For the third, we rely

not only on Marionette’s ability to spawn a new model, but we also rely on inter-

model communications. In fact, we can generate the listening port server-side on the

the fly and communicate it in-band to the client via the 227 Entering Passive Mode

(a,b,c,d,x,y) command, which is processed by a client-side template-grammar han-

dler to populate a client-side global variable. This global variable value is then used

to inform the spawned model as to which server-side TCP port it should connect.

The full model-specification appears in the appendix (Figures 28 and ??)

Our FTP model-specification relies upon the upstream password field and down-

stream file transfer in order to encode capacity. In our testbed the FTP model achieved

2 Mbps downstream and 10Kbps upstream goodput. We also created a high-throughput

version of the FTP model that operates similarly to the one described here, however

it also implements the “put” command and a second file transfer model that switches

the roles of the server and client, thereby mimicking an FTP upload and providing 2

Mbps of goodput in both directions.
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7.8.3 Proxy Traversal

As our next case, we evaluate Marionette in a setting where a protocol-enforcing

proxy is positioned between the client and server. Given the prevalence of the HTTP

protocol, and breadth of proxy systems available and deployed, we will focus our

attention on engineering Marionette model-specifications that are able to traverse an

HTTP proxy system.

In considering an HTTP proxy, there are at least five actions it could do to dis-

rupt marionette communications, which need not be considered in the non-proxied

setting. A proxy could (1) add HTTP headers, (2) remove HTTP headers, (3) modify

header or payload contents, (4) re-order/multiplex messages, or (5) drop messages.

Marionette is able to handle each of these cases with only slight enhancements to the

system we’ve already described.

We first considered using FTE to generate ciphertexts that are valid HTTP mes-

sages. However, FTE is sensitive to modifications to its ciphertexts. As an example,

changing the case of a single character of an FTE ciphertext would result in FTE

decryption failure. We could have compensated for this by anticipating changes a

proxy introduces to ciphertexts, which may work in certain settings. However, we

want a solution that is general and robust.

Fortunately, there are two primary tools that Marionette provides us that make

proxy traversal an easy task: template grammars (Section 7.2), which give us fine-

grained control over ciphertexts and allows us to tolerate ciphertext modification,

and our record layer (Section 7.5) which allows to tolerate multiplexing and message

re-ordering.

Building our HTTP template grammar. As a proof of concept we developed

four HTTP template grammars. Two languages that are HTTP-GET requests, one
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with a header field of Connection: keep-alive and one with Connection: close. We

then created analogous HTTP-OK languages that have keep-alive and close headers.

Our model oscillates between the keep-alive GET and OK states with probability

0.9, until it transitions from the keep-alive OK state to the GET close state, with

probability 0.1

In all upstream messages we encode data into the URL and cookie fields using the

FTE template grammar handler. Downstream we encode data in the payload body

using the FTE and follow this with a handler to correctly populate the Content-

Length field.

We provide receiver-side HTTP parsers that validate incoming HTTP messages

(e.g., ensure content length is correct) and then extract the URL, cookie and payload

fields. These parsers, are, of course, able tolerate to significant message modifications

including insertion of headers, header re-ordering, or even header deletion of non-

information carrying fields, such as, say, the User-Agent field.

Coping with multiplexing and re-ordering. The template grammar plugin re-

solves the majority of issues that we could encounter. However, it doesn’t allow us

to cope with cases where the proxy might re-order or multiplex messages. By mul-

tiplex, we mean that a proxy may interleave two or more Marionette TCP channels

into a single TCP stream between the proxy and server. In such a case, we can no

longer assume that two messages from the same incoming datastream are, in fact,

two sequential messages from the same client model.

In the non-proxy setting there is a one-to-one mapping between channels and

server-side Marionette model instances. In the proxied setting, the channel to model

instance mapping may be one-to-many. We are able to cope with this scenario by

relying upon the non-determinism of our Marionette models, and our record layer.
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Figure 21: A comparison of the aggregate traffic features for ten downloads of amazon.com using
Firefox 35, compared to the traffic generated by ten executions of the Marionette model mimicking
amazon.com.

We use non-determinism and modify the server-side broker to attempt to execute all

active model instances on each active model. If, for a given channel, no model was

successful then the broker attempts to instantiate a new model on that instance. In

our plugins we must rely upon our record layer to determine success for each of these

operations. As an example, in some cases a message may successfully decode and

decrypt, but the model instance ID field doesn’t match the current model.

Testing with Squid HTTP proxy. We validated our HTTP model-specification

and broker/plugin enhancements against Squid [121] caching proxy version 3.4.9.

The squid caching proxy adds headers, removes header, alters headers and payload

contents, and re-orders/multiplexes datastreams. In all cases, Marionette was able to

successful cope with the changes Squid introduced.

We were able to instigate cases where the Squid proxy dropped messages. How-

ever, this only occurred when our HTTP messages were malformed. If a proxy un-

predictably dropped messages, we could deal with this by enhancing our record layer

to include re-transmit functionality.

In our testbed, our HTTP model-specification for use with Squid proxy achieved

5.5Mbps downstream and 500Kbps upstream goodput.
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7.8.4 Traffic Analysis Resistance

In our final case study, we aim to control statistical attributes of HTTP traffic. As

our baseline, we visited Amazon.com with Firefox 35 and independently captured all

resultant network traffic ten times16. We then post-processed the packet captures and

recorded the following values: the lengths of HTTP response payloads, the number

of HTTP request-response pairs per TCP connection, and the number of TCP con-

nections generated as a result of each page visit. Our goal in this section is to utilize

Marionette to model the traffic characteristics of these observed traffic patterns to

make network sessions that “look like" a visit to Amazon.com. We’ll discuss each

traffic characteristic individually, then combine them in a single model to mimic all

characteristics simultaneously.

Message lengths. To model message lengths, we started with the HTTP response

template grammar described in Section 7.8.3. We adapted this handler such that it

takes an additional, integer value as input. This integer dictates the output length of

the HTTP response body. On input n, the handler must return an HTTP response

payload of exactly length n bytes.

From our packet captures of Amazon.com we recorded the message length for each

observed HTTP response payload. Each time our modified HTTP response template

grammar was invoked by Marionette, we sampled from the observed distribution of

message lengths and used this value as as input to the HTTP response template

grammar. With this, we generate HTTP response payloads with lengths that match

those observed during our downloads of Amazon.com.
16Retrieval performed on February 21, 2015.
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Messages per TCP connection. Wemodel the number of HTTP request-response

pairs per TCP connection using the following strategy, which employs hierarchical

modeling. Let’s start with the case where we want to model a single TCP connection

that has n HTTP request-response pairs. We can achieve this by creating a model

Mn with n+ 2 states, and n+ 1 transitions. From the start state of this model there

is only one path, and each transition results in an action block that performs one

HTTP request-response. This is the most straightforward approach to achieving a

connection which contains exactly n request-response pair with probability 1.

Then, we can employ Marionette’s hierarchical model structure to have fine-

grained control over the number of HTTP request-response pairs per connection.

Let’s say that we want to have n1 request-response pairs with probability p1, n2 with

probability p2, and so on. For simplicity, we assume that all values ni are unique, all

values pi are greater than 0, and Σm
i=0pi = 1. For each possible value of ni we create

a model Mni
, as described above. Then, we create a single parent model which has

a start state with a transition to Mn1 with probability p1, Mn2 with probability p2,

and so on. This enables us to create a single, hierarchical model that that models the

number of request-response pairs for arbitrary distributions.

Simultaneously active connections. Finally, we aim to control the total num-

ber of connections generated by a model during an HTTP session. That is, we want

our model to spawn ni connections with probability pi, according to some distribu-

tion dictated by our target. We can achieve this by taking as the same hierarchical

approach used to model request-response pairs, with the distinction that each child

model spawns ni connections.

Building the model and its performance. For each statistical traffic feature, we

analyzed the distribution of values in the packet captures from our Amazon.com visits.
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We then used the strategies in this section to construct a three-level hierarchical

model that controls all of the traffic features simultaneously: message lengths, number

of request-response pairs per connection, and the number of simultaneously active

TCP connections. With this new model we deployed Marionette in our testbed and

captured all network traffic it generated. In Figure 21 we have a comparison of

the traffic features of the Amazon.com traffic, compared to the traffic generated by

our Marionette model.

In our testbed, this model achieved 800Kbps downstream and 500Kbps upstream

goodput. Compared to Section 7.8.3 this decrease in performance can be explained,

in part, by the fact that Amazon.com has many connections with only a single HTTP

request-response, and very short messages. Hence, it introductions additional over-

head to create and manage these connections.

7.9 Conclusion

The Marionette system is the first programmable obfuscation system to offer users the

ability to control traffic features ranging from the format of individual application-

layer messages to statistical features of connections to dependencies among multiple

connections. In doing so, the user can choose the strategy that best suits their

network environment and usage requirements. More importantly, Marionette achieves

this flexibility without sacrificing performance beyond what is required to maintain

the constraints of the model. This provides the user with an acceptable trade-off

between depth of control over traffic features and network throughput. Our evaluation

highlights the power of Marionette through a variety of case studies motivated by

censorship techniques found in practice and the research literature. Here, we conclude

by putting those experimental results into context by explicitly comparing them to

the state of the art in application identification techniques.

118



www.manaraa.com

DPI. The most widely used method for application identification available to cen-

sors is DPI, which can search for content matching specified keywords or regular

expressions. DPI technology is now available in a variety of networking products

with support for traffic volumes reaching 30Gbps [32], and has been demonstrated

in real-world censorship events by China [124] and Iran [10]. The Marionette sys-

tem uses a novel template grammar system, along with a flexible plugin system, to

control the format of the messages produced and how data is embedded into those

messages. As such, the system can be programmed to produce messages that meet

the requirements for a range of DPI signatures, as demonstrated in Section 7.8.1

Proxies and Application Firewalls. Many large enterprise networks implement

more advanced proxy and application-layer firewall devices that are capable of deeper

analysis of particular protocols, such as FTP, HTTP, and SMTP [121]. These devices

can cache data to improve performance, apply protocol-specific content controls, and

examine entire protocol sessions for indications of attacks targeted at the application.

In many cases, the proxies and firewalls will rewrite headers to ensure compliance

with protocol semantics, multiplex connections for improved efficiency, change proto-

col versions, and even alter content (e.g., HTTP chunking). Although these devices

are not known to be used by nation-states, they are certainly capable of large traffic

volumes (e.g., 400TB/day [6]) and could be used to block most current obfuscation

and mimicry systems due to the changes they make to communications sessions. Mar-

ionette avoids these problems by using template grammars and a resilient record layer

to combine several independent data-carrying fields into a message that is robust to

reordering, changes to protocol headers, and connection multiplexing. The proto-

col compliance and proxy traversal capabilities of Marionette were demonstrated in

Sections 7.8.2 and 7.8.3, respectively.
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Advanced Techniques. Recent papers by Houmansadr et al. [63] and Geddes et

al. [53] have presented a number of passive and active tests that a censor could use

to identify mimicry systems. The passive tests include examination of dependent

communication channels that are not present in many mimicry systems, such as a

TCP control channel in the Skype protocol. Active tests include dropping packets or

preemptively closing connections to elicit an expected action that the mimicked sys-

tems do not perform. Additionally, the networking community have been developing

methods to tackle the problem of traffic identification for well over a decade [25], and

specific methods have even been developed to target encrypted network traffic [131].

To this point, there has been no evidence that these more advanced methods have

been applied in practice. This is likely due to two very difficult challenges. First, many

of the traffic analysis techniques proposed in the literature require non-trivial amounts

of state to be kept on every connection (e.g., packet size bi-gram distributions), as

well as the use of machine learning algorithms that do not scale to the multi-gigabit

traffic volumes of enterprise and backbone networks. As a point of comparison, the

Bro IDS system [94], which uses DPI technology, has been known to have difficulties

scaling to enterprise-level networks [112]. The second issue stems from the challenge

of identifying rare events in large volumes of traffic, commonly referred to as the base-

rate fallacy. That is, even a tiny false positive rate can generate an overwhelming

amount of collateral damage when we consider traffic volumes in the 1 Gbps range.

Sommer and Paxson [104] present an analysis of the issue in the context of network

intrusion detection and Perry [95] for the case of website fingerprinting attacks.

Regardless of the current state of practice, there may be some cases where techno-

logical developments or a carefully controlled network environment enables the censor

to apply these techniques. Since Marionette seeks to support a large range of pos-

sible use cases, we must consider how the system could address these issues. As we
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have shown in Section 7.8.4, the Marionette system is capable of controlling multiple

statistical features not just within a single connection, but also across many simul-

taneous connections. We also demonstrate how our system can be programmed to

spawn interdependent models across multiple connections in Section 7.8.2.
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8 Concluding Thoughts

This dissertation advances the state-of-the-art in understanding the risks of traffic

analysis attacks, and new strategies for circumventing Internet censorship.

In Section 3 and Section 4 we evaluate a range of cryptographic protocols and

show that they leak sensitive information about their users. In the context of en-

crypted messaging applications, such as Apple’s iMessage and WhatsApp, we show

that a passive network observer can learn sensitive information, such as: the language

used for communications and user operating systems. When encryption is used to

conceal web-browsing habits it fails to conceal the websites requested, if we assume

the attacker has a priori information about the sites the user may visit. What’s

more, we show that per-packet padding is prohibitively expensive (cf. Section 3) or

fails completely (cf. Section 4) in these settings.

Our evaluations in Section 3 and Section 4 are compelling. Yet, they do not con-

clusively show that such attacks are feasible or practical at Internet-scale. As argued

by Jaurez et al. [3], real-world considerations such as: caching, localization, and user

web-browsing habits can increase the complexities of these attacks for the adversary.

Nevertheless, the work of Jaurez et al. [3] is also inconclusive, and motivates the need

for future work to reconcile it with the abundance of literature [16, 73, 60, 92, 24, 83]

supporting the contrary.

In Section 6 we present a new cryptographic primitive, Format-Transforming En-

cryption (FTE), that enables users to control output ciphertexts formats with a reg-

ular expression. We use FTE to build a proxy system that is able to proxy arbitrary

datastreams by transmitting messages that match a user-specified regular expression.

Our evaluation shows that this system is able to effortlessly bypass modern DPI sys-

tems by coercing them into classifying traffic as a protocol of our choosing. Then,
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in Section 7 we build a proxy system, called Marionette, that is purposely built to-

wards censorship cicrumvention and addresses some of the limitations of the system

we present in Section 6. Marionette is powered by a domain-specific language that

allows its users to control network traffic features such as format of messages on the

wire, using FTE, and the order in which these messages are transmitted. As one

example, we show that Marionette can be used to create an RFC-compliant FTP file

transfer as cover-traffic, while being able to tunnel arbitrary datastreams.

As we note in Section 5, modern attempts at censorship circumvention systems can

be divided into three categories: obfuscation, mimicry and tunneling. It is argued by

Houmansadr et al. [63] that developers of a mimcry-based circumvention system are at

a fundamental disadvantage because they are required to mimic every single feature of

quirk or the system they target. As an example, if one is trying to mimic Skype, they

are, ostensibly, required to identify and emulate every single esoteric behavior of the

system — even bugs. However, what is not addressed by Houmansadr is the practical

considerations that network monitors must overcome, such as: background traffic,

NATs, and clients that may be running many simultaneous applications. Indeed, there

is open questions about the potential of identify these mimcry systems at Internet

scale.

What we can conclude from this work on traffic analysis (Section 3 and Section 4)

and censorship circumvention (Section 6 and Section 7) is that many open research

questions remain. Therefore, it is critical that we continue this effort to understand

the potential for privacy-compromising attacks, and tools we can use to resist them.
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Appendix A BuFLO Countermeasure

Parameters Overhead Classifier Accuracy (%)
τ ρ d Bandwidth Latency LL H P VNG++ P-NB

(%) (s)
0 40 1000 93.5 6.0 18.4± 2.9 0.8± 0.0 27.3± 1.8 22.0± 2.1 21.4± 1.0
0 40 1500 120.0 3.6 16.2± 1.6 0.8± 0.0 23.3± 3.3 18.3± 1.0 18.8± 1.4
0 20 1000 140.5 2.4 16.3± 1.2 0.8± 0.0 20.9± 1.6 15.6± 1.2 17.9± 1.7
0 20 1500 201.3 1.2 13.0± 0.8 0.8± 0.0 24.1± 1.8 18.4± 0.9 18.7± 1.0

10000 40 1000 129.2 6.0 12.7± 0.9 0.8± 0.0 14.1± 0.9 12.5± 0.8 13.2± 0.7
10000 40 1500 197.5 3.6 8.9± 1.0 0.8± 0.0 9.4± 1.3 8.2± 0.8 9.3± 1.3
10000 20 1000 364.5 2.4 5.4± 0.8 0.8± 0.0 7.3± 1.0 5.9± 1.0 6.8± 0.9
10000 20 1500 418.8 1.2 4.4± 0.2 0.8± 0.0 5.1± 0.7 4.1± 0.8 5.3± 0.5

Table 18: Overhead and accuracy results for the BuFLO countermeasure at k = 128.
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Appendix B Experimental Results

Classifier
Countermeasure LL H P BW TIME VNG VNG++
None 98.1± 0.1 98.9± 0.1 97.2± 0.2 80.1± 0.6 9.7± 0.1 93.7± 0.2 93.9± 0.3

Session Random 255 40.7± 0.3 13.1± 0.2 90.6± 0.3 54.9± 0.4 9.5± 0.1 87.8± 0.3 91.6± 0.3
Packet Random 255 80.6± 0.4 40.1± 0.3 94.9± 0.3 77.4± 0.6 9.4± 0.1 91.6± 0.2 93.5± 0.3

Pad to MTU 63.1± 0.5 4.7± 0.1 89.8± 0.4 62.7± 0.6 9.6± 0.2 82.6± 0.4 88.2± 0.4
Packet Random MTU 45.8± 0.4 11.2± 0.2 92.1± 0.3 64.6± 0.5 9.5± 0.1 77.8± 0.3 87.6± 0.3
Exponential 95.4± 0.2 72.0± 0.4 96.6± 0.3 77.1± 0.6 9.6± 0.1 95.1± 0.2 94.8± 0.3
Linear 96.6± 0.2 89.4± 0.2 96.8± 0.2 79.5± 0.6 9.6± 0.2 93.5± 0.2 94.3± 0.3
Mice-Elephants 84.8± 0.4 20.9± 0.3 94.5± 0.3 72.3± 0.6 9.6± 0.1 89.4± 0.3 91.7± 0.4

Direct Target Sampling 25.1± 0.6 2.7± 0.1 81.8± 0.5 41.2± 0.9 9.7± 0.2 69.4± 0.6 80.2± 0.5
Traffic Morphing 31.0± 0.7 6.3± 0.3 88.7± 0.4 43.0± 0.9 9.8± 0.2 81.0± 0.5 86.0± 0.4

Figure 22: Classifier performance for k = 128, using the Herrmann dataset.

Classifier
Countermeasure LL H P BW TIME VNG VNG++
None 87.1± 0.6 87.4± 0.3 87.5± 0.6 55.7± 0.7 11.6± 0.7 72.0± 1.1 76.3± 1.0

Session Random 255 25.3± 0.4 9.5± 0.1 66.1± 0.6 38.6± 0.5 12.1± 0.6 60.5± 1.1 68.7± 1.2
Packet Random 255 43.6± 0.7 13.1± 0.3 74.0± 0.7 51.5± 0.7 11.8± 0.6 65.6± 1.3 71.8± 1.0

Pad to MTU 41.3± 0.6 5.0± 0.1 69.2± 0.7 41.8± 0.6 11.6± 0.7 56.8± 1.2 65.7± 1.1
Packet Random MTU 21.8± 0.5 7.5± 0.1 69.1± 0.7 40.2± 0.6 11.4± 0.8 47.1± 1.0 60.3± 1.0
Exponential 72.9± 0.6 61.2± 0.4 82.1± 0.8 54.8± 0.8 10.5± 0.7 74.1± 0.8 78.0± 0.9
Linear 79.2± 0.7 73.9± 0.3 84.2± 0.6 54.4± 0.9 12.0± 0.7 70.3± 0.9 74.3± 1.4
Mice-Elephants 55.9± 0.9 25.6± 0.3 75.6± 0.7 49.3± 0.6 11.7± 0.5 65.9± 1.1 71.2± 1.0

Direct Target Sampling 19.4± 1.0 2.5± 0.3 47.4± 1.4 26.8± 1.1 11.1± 0.7 35.7± 3.0 49.7± 1.9
Traffic Morphing 20.1± 1.2 4.1± 0.5 55.3± 1.3 25.6± 1.1 12.3± 0.7 45.4± 2.1 56.7± 2.0

Figure 23: Classifier performance for k = 128, using the Liberatore dataset.

Privacy Set Size
Classifier k = 16 k = 32 k = 64 k = 128 k = 256 k = 512 k = 775

None 96.9± 0.1 95.9± 0.2 95.1± 0.2 93.9± 0.3 93.3± 0.4 91.6± 0.6 90.6± 0.9

Session Random 255 96.0± 0.1 94.7± 0.2 93.4± 0.2 91.6± 0.3 89.4± 0.4 85.6± 0.6 84.1± 0.5
Packet Random 255 96.6± 0.1 95.7± 0.2 94.5± 0.2 93.5± 0.3 92.2± 0.5 89.8± 0.7 88.5± 0.8

Pad to MTU 95.2± 0.1 93.2± 0.2 91.4± 0.2 88.2± 0.4 84.2± 0.5 79.5± 0.8 77.3± 0.7
Packet Random MTU 95.0± 0.1 93.1± 0.2 90.8± 0.2 87.6± 0.3 83.3± 0.5 78.6± 0.6 74.8± 0.8
Exponential 97.1± 0.1 96.5± 0.1 95.6± 0.2 94.8± 0.3 93.7± 0.4 92.5± 0.6 90.8± 1.2
Linear 96.9± 0.1 96.0± 0.2 95.1± 0.2 94.3± 0.3 92.8± 0.5 91.8± 0.6 89.5± 1.1
Mice-Elephants 96.2± 0.1 95.1± 0.2 93.6± 0.2 91.7± 0.4 90.0± 0.5 86.5± 0.8 84.0± 0.8

Direct Target Sampling 93.1± 0.2 89.8± 0.2 85.3± 0.3 80.2± 0.5 74.3± 0.8 65.8± 1.8 61.0± 4.1
Traffic Morphing 94.8± 0.2 92.8± 0.2 90.2± 0.3 85.6± 0.7 83.3± 0.7 77.7± 2.3 75.1± 3.1

Figure 24: Performance of the VNG++ classifier, for varying values of k, using the Herrmann
dataset.
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Privacy Set Size
Classifier k = 16 k = 32 k = 64 k = 128 k = 256 k = 512 k = 775

None 98.4± 0.1 98.0± 0.1 97.7± 0.2 97.2± 0.2 97.2± 0.3 96.4± 0.5 96.4± 0.4

Session Random 255 96.8± 0.1 95.5± 0.2 93.6± 0.2 90.6± 0.3 87.2± 0.5 83.2± 0.5 78.7± 0.9
Packet Random 255 97.6± 0.1 96.9± 0.2 96.2± 0.2 94.9± 0.3 93.9± 0.3 91.2± 0.8 90.3± 0.7

Pad to MTU 96.4± 0.1 94.8± 0.2 92.7± 0.3 89.8± 0.4 86.6± 0.5 82.4± 0.8 79.2± 0.9
Packet Random MTU 97.0± 0.1 95.8± 0.2 94.4± 0.2 92.1± 0.3 89.3± 0.5 85.6± 0.7 83.2± 0.6
Exponential 98.1± 0.1 97.9± 0.1 97.2± 0.2 96.6± 0.3 95.6± 0.4 95.2± 0.3 94.6± 0.4
Linear 98.1± 0.1 97.7± 0.1 97.6± 0.2 96.8± 0.2 95.8± 0.5 95.0± 0.6 94.2± 0.7
Mice-Elephants 97.5± 0.1 97.0± 0.1 95.6± 0.2 94.5± 0.3 93.2± 0.4 89.9± 0.9 88.7± 1.0

Direct Target Sampling 94.7± 0.2 91.7± 0.2 87.2± 0.3 81.8± 0.5 75.9± 0.7 68.7± 0.9 62.5± 1.3
Traffic Morphing 95.9± 0.1 94.2± 0.2 91.6± 0.3 88.7± 0.4 85.6± 0.6 81.0± 0.9 77.8± 1.3

Figure 25: Performance of the Panchenko classifier, for varying values of k, using the Herrmann
dataset.
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Appendix C Algorithms for Ranking and Unranking a Regular Language

In Figure 26 we have the core algorithms BuildTable, rank, and unrank, used in our

FTE record layer. The ordinality of symbol α ∈ Σ, written ord(α), is its position

(starting from 1) in the lexicographical ordering of the elements of Σ. T [q, i] is the

number of strings of length i that end in an accepting state when starting from state q;

thus T [q0, i] is the number of X ∈ L such that |X| = i. S[i] is the number of strings

in L of length at most i− 1. Unspecified algorithm FindSlice finds the largest ` such

that S[`] < c, and returns n = `+1 and c′ = c−S[`]. This can be done in O(log2(|S|))

time via binary search.

alg. BuildTable(N):
for q ∈ Q do
if q ∈ F then T [q, 0]← 1

for i = 1 to N do
for q ∈ Q do
for a ∈ Σ do
T [q, i]

+← T [δ(q, a), i− 1]
S[0]← 0
for i = 1 to N do
S[i]← S[i−1]+T [q0, i−1]

alg. rank(X):
n← |X|; c← S[n]
q ← q0
for i = 1 to n do
for j = 1 to ord(X[i]) − 1

do
c

+← T [δ(q, aj), n− i]
q ← δ(q,X[i])

ret c

alg. unrank(c):

(n, c′)← FindSlice(c)
X ← ε; q ← q0; j ← 1
for i = 1 to n do
while c′ ≥ T [δ(q, aj), n− i]

do
c′

−← T [δ(q, aj), n − i];

j
+← 1
X[i] ← aj ; q ← δ(q,X[i]);

j ← 1
ret X

Figure 26: Algorithms for ranking and unranking strings in the regular language L of a DFA
M = (Q,Σ, δ, q0, F ).
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Appendix D Marionette POP3 Format

In Figure 27 we have the format-specification for languages that mimicks POP3.

connection(tcp, 1110):
start NULL ready 1
ready B_ready username 1
username B_uname username_ok 1
username_ok B_uname_ok password 1
password B_passwd password_ok 1
password_ok B_passwd_ok get_delete_message_retr 1
get_delete_message_retr B_gdm_retr get_delete_message_msg 1
get_delete_message_msg B_gdm_msg get_delete_message_del 1
get_delete_message_del B_gdm_del get_delete_message_ok 1
get_delete_message_ok B_gdm_ok get_delete_message_retr 0.5
get_delete_message_ok B_gdm_ok sign_off_quit 0.5
sign_off_quit B_sign_off_quit sign_off_ok 1
sign_off_ok B_sign_off_ok end 1

action_block B_ready:
server io.puts("+OK My POP3 server ready.\n")

action_block B_uname:
client io.puts("USER MyUsername\n")

action_block B_uname_ok:
server io.puts("+OK please send PASS command\n")

action_block B_passwd:
client tg.send("pop3_password")

action_block B_passwd_ok:
server io.puts("+OK MyUsername is welcome here\n")

action_block B_gdm_retr:
client io.puts("RETR 1\n")

action_block B_gdm_msg:
server tg.send("pop3_message_response")

action_block B_gdm_del:
client io.puts("DELE 1\n")

action_block B_gdm_ok:
server io.puts("+OK\n")

action_block B_sign_off_quit:
client io.puts("quit\n")

action_block B_sign_off_ok:
server io.puts("+OK MyUsername My POP3 server signing off.\n")

Figure 27: The “pop3_simple_blocking" format.
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Appendix E Marionette FTP Format

In Figure 28 and Figure 29 we have the format-specification for POP3.

connection(tcp, 2121):
start NULL ready 1
ready B_ready B_uname username 1
username B_uname username_ok 1
username_ok B_uname_ok password 1
password B_passwd password_ok 1
password_ok B_passwd_ok pasv_mode 1
pasv_mode B_pasv pasv_mode_ok 1
pasv_mode_ok B_pasv_ok ftp_get_file_request 1
ftp_get_file_request B_gf_req ftp_get_file_response_started 1
ftp_get_file_response_started B_gf_resp ftp_pasv_transfer 1
ftp_pasv_transfer B_pasv_xfer ftp_pasv_transfer_ok 1
ftp_pasv_transfer_ok B_pasv_xfer_ok sign_off_quit 1
sign_off_quit B_sign_off_quit sign_off_ok 1
sign_off_ok B_sign_off_ok end 1

action_block B_ready:
server io.puts("220 My FTP Server.\n")

action_block B_uname:
client io.puts("USER MyUsername\n")

action_block B_uname_ok:
server io.puts("Password required for MyUsername\n")

action_block B_passwd:
client tg.send("pop3_password")

action_block B_passwd_ok:
server io.puts("230 User MyUsername logged in.\n")

action_block B_pasv:
client io.puts("PASV\n")

action_block B_pasv_ok:
server io.puts("227 Entering Passive Mode (127,0,0,1,195,86).\n")

action_block B_gt_req:
client io.puts("get MyFile.mp3\n")

action_block B_gf_resp:
server io.puts("150 Data connection starting for MyFile.mp3.\n")

action_block B_pasv_xfer:
server model.spawn("ftp_file_transfer")

action_block B_pasv_xfer_ok:
server io.puts("226 Transfer Complete.\n")

action_block B_sign_off_quit:
client io.puts("quit\n")

action_block B_sign_off_ok:
server io.puts("221 Goodbye.\n")

Figure 28: The “ftp_passive_transfer" format. Spawned by the “ftp_session" format.
Needed when a PASV transfer is spawned.
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connection(tcp, 50006):
start NULL ftp_pasv_transfer 1
ftp_pasv_transfer B_xfer end 1

action_block B_xfer:
server fte.send("ID3.*", 512)

Figure 29: The “ftp_file_transfer" format. Spawned by the “ftp_session" format. Needed
when a PASV transfer is spawned.
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